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Why study cloaking? Why in elliptical geometry?

Why study cloaking?
Physical and engineering challenges and problems, such as the study
and realization of metamaterials. [Alù, Engheta, (2005).]

Several suggestions based on metamaterials on how to achieve cloaking:
1 cloaking by transformation optics;
2 cloaking by anomalous localized resonance CALR.

Why in elliptical geometry?
Explicit results known only for systems with circular geometries in R2.
Cloaking depends on the geometry of the problem.
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Cloaking by transformation optics - Electrical impedance
tomography

Ω ⊂ Rn, n ≥ 2, bounded domain.

{
∇ · (σ∇u) = 0 in Ω,
u = f on ∂Ω,

σ = (σij) : Ω→ Rn is the unknown
conductivity.

Ω

∂Ω

u = f

∇ · (σ∇u) = 0

We use the Dirichlet to Neumann map

Λσ : u
∣∣
∂Ω
→ (σ∇u) · n̄

∣∣
∂Ω
.
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Change of variables

Λσ allows us to determine σ at its best at less than a change of variables.

Proposition

Let F : Ω→ Ω be such that F (x) = x at ∂Ω. Then the boundary
measurements associated with σ and F∗σ are identical, i.e. Λσ(f ) = ΛF∗σ(f )
for all f .

F∗σ is the push-forward of σ by the change of variables F :

F∗σ(y) =
1

det(DF (x))
DF (x)σ(x)(DF (x))T .

→ Cloaking is possible!
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Change of variables

There exists a transformation F : Ω→ Ω such that
F is continuous and piecewise smooth;
F (Bρ(0)) = B1(0) while F (B2(0)) = B2(0);
F (x) = x at the boundary ∂B2(0).

B2

Bρ

F

B2

B1

The content of B1(0) is cloaked, but its presence is known.
→ B1(0) is near-cloaked.
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Results in circular geometry

Theorem
Suppose that the shell B2(0) \ B1(0) has conductivity F∗1. If ρ is small
enough, then B1(0) is nearly cloaked, i.e. there exists some constant C > 0
such that

‖ΛσA − Λ1‖ ≤ Cρ2.

The proof is based on problems with dielectric inclusions.
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Dielectric inclusions

Perfect insulation problem:
∆uρ0 = 0 in BR(0) \ Bρ(0),
uρ0 = f on ∂BR(0),
∂uρ0
∂n̄ = 0 on ∂Bρ(0),

Perfect conductivity problem:
∆uρ∞ = 0 in BR(0) \ Bρ(0),
uρ∞ = f on ∂BR(0),
uρ∞ = c∞ on ∂Bρ(0),

BR

Bρ

BR

Bρ

Calculate Λρ0,Λ
ρ
∞ and estimate:

‖Λ1 − Λρ0‖ ≤ Cρ2 ‖Λ1 − Λρ∞‖ ≤ Cρ2
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Results in elliptic geometry I

Theorem

Assume that f =
∑

k∈Z fke
ikν with fk = 0 for all |k| < k0, and fk0 6= 0.

Then there exists C > 0 depending only on R such that

‖Λ1 − Λρ0‖ ≥ Ck0|fk0 |e2k0ρ

‖Λ1 − Λρ∞‖ ≥ Ck0|fk0 |e2k0ρ.

With this procedure there is no cloaking in elliptic geometry!

Why? The size of the inclusions matters!
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Results in elliptic geometry II

Theorem
Suppose the source f : ∂ER(0)→ R, f ∈ C l , is high-frequency
monochromatic, that is, there is a large k0 ∈ N such that f = fk0e

ik0ν . Then
there exists some constant C > 0 such that∥∥∥∥∂u1

∂n̄
−
∂uρ0
∂n̄

∥∥∥∥
L2(∂ER(0))

≤ C

k0
and

∥∥∥∥∂u1

∂n̄
− ∂uρ∞

∂n̄

∥∥∥∥
L2(∂ER(0))

≤ C

k0
.
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Cloaking by anomalous localized resonance - The problem

{
∇ · (aη∇uη) = f in R2,
uη → 0 as |x | → ∞.

aη = A(x) + iη is the electric
permittivity:

A(x) has a core-shell-matrix
character:

A(x) =


+1 in the core Σ,
−1 in the shell BR \ Σ,
+1 in the matrix R2 \ BR .

η > 0 is a loss parameter;

Σ

∂BR(0)

f

∂Bq(0)

The source f is supported on ∂Bq(0), q > R .
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Anomalous localized resonance

Energy of the solution:

Eη =
η

2

∫
R2
|∇uη|2 dx

When η → 0
Anomalous Localized Resonance occurs: |∇uη| diverges in a specific
region while it converges smoothly outside this region. No dipedence
from aη.
Normalize the problem by αη ∈ R, with αη → 0.
αη∇uη → 0: the source f and the structure are cloaked!
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Cloaking results in the litterature

Spectral theory techniques:
Ammari, Ciraolo, Kang, Lee, Milton proved that in circular geometry
(core = Br , shell = BR) cloaking happens only if q < R∗, where

R∗ = r

(
R

r

)3/2

.

[Ammari, Ciraolo, Kang, Lee, Milton, (2013).]
Milton and Nicorovici performed numerical simulations which confirm
R∗.
Chung, Kang, Kim, Lee proved that in elliptic geometry cloaking
happens only if q < R∗, where

R∗ =

{
(3R − r)/2 for R ≤ 3r ,
2(R − r) for R > 3r ,

if core = Er , shell = ER , where

Er =
{

(x , y) ∈ R2 :
x2

cosh2 r
+

y2

sinh2 r
< a2}.

[Chung, Kang, Kim, Lee, (2013).]Giovanni Rossanigo Results on cloaking by transformation optics and anomalous localized resonance in elliptic geometry
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Variatonal methods

Khon, Lu, Schweizer, Weinsten approach based on two dual variational
principles. [Khon, Lu, Schweizer, Weinsten, (2012).]

Primal variational principles: Eη ≤ Iη, used to prove that cloaking does
not happen.
Dual variational principles: Eη ≥ Jη, used to prove that cloaking
happens.

 based on test functions.
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Results in elliptic geometry I

Theorem (No core implies resonance for sources at any distance)

Assume that the configuration has no core (i.e. Σ = ∅). Let
f = FH1b∂ER(0) with 0 6= F : ∂ER(0)→ R be a source at a distance
q > R . Then

Eη(uη)→ +∞ as η → 0.

 Cloaking always happens

 Dual variational principle
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Results in elliptic geometry II

Theorem (Non-resonance beyond R∗)

Let Σ = Er (0) ⊂ ER(0) and let A(x) = +1 in Σ and R2 \ ER(0), A(x) = −1
in ER(0) \ Σ.
Let f = FH1b∂Eq(0), 0 6= F : ∂Eq(0)→ R, be a source at a distance
q > R with zero average and F ∈ L2(∂Eq(0)). Then the configuration is
non-resonant if q > R∗ where

R∗ = (3R − r)/2
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Thank you for the attention
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Elliptic coordinates

Definition
The elliptical coordinates (µ, ν) ∈ [0,+∞)× [0, 2π) on R2 are defined via{

x = a coshµ cos ν

y = a sinhµ sin ν

where a > 0.

The coordinate µ is called the elliptic radius.
The coordinate lines are hyperbolae and ellipses.
We define the elliptical region
Er (0) =

{
(x , y) ∈ R2 : x2

cosh2 r
+ y2

sinh2 r
< a2}.
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The dual variational principles

Set uη = vη + i/ηwη, then

∇ · (aη∇uη) = f ⇐⇒

{
∇ · (A∇vη)−∆wη = f ,

∇ · (A∇wη) + η2∆vη = 0

The energy becomes

Eη =
η

2

∫
R2
|∇uη|2 dx ⇒ Iη =

η

2

∫
R2
|∇vη|2 dx +

1
2η

∫
R2
|∇wη|2 dx

PVP: the solution of the original problem is obtained by minimizing Eη,
so we minimize Iη with the constraint ∇ · (A∇v)−∆w = f .
DVP: we take the Legendre transform of Iη

Jη =

∫
R2

f ψ dx − η

2

∫
R2
|∇v |2 dx − 1

2η

∫
R2
|∇ψ|2 dx

then we maximize Jη with the constraint ∇ · (A∇ψ) + η∆v = 0.
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