

Results on cloaking by transformation optics and anomalous localized resonance in elliptic geometry

Giovanni Rossanigo

October 7th, 2021

Contents

1 Introduction

2 Cloaking by transformation optics

3 Cloaking by anomalous localized resonance

Why study cloaking? Why in elliptical geometry?

Why study cloaking?

- Physical and engineering challenges and problems, such as the study and realization of **metamaterials**. [Alù, Engheta, (2005).]

Several suggestions based on metamaterials on how to achieve cloaking:

- ① cloaking by transformation optics;
- ② cloaking by anomalous localized resonance CALR.

Why in elliptical geometry?

- Explicit results known only for systems with circular geometries in \mathbb{R}^2 .
- Cloaking depends on the geometry of the problem.

Why study cloaking? Why in elliptical geometry?

Why study cloaking?

- Physical and engineering challenges and problems, such as the study and realization of **metamaterials**. [Alù, Engheta, (2005).]

Several suggestions based on metamaterials on how to achieve cloaking:

- ① cloaking by transformation optics;
- ② cloaking by anomalous localized resonance CALR.

Why in elliptical geometry?

- Explicit results known only for systems with circular geometries in \mathbb{R}^2 .
- Cloaking depends on the geometry of the problem.

Why study cloaking? Why in elliptical geometry?

Why study cloaking?

- Physical and engineering challenges and problems, such as the study and realization of **metamaterials**. [Alù, Engheta, (2005).]

Several suggestions based on metamaterials on how to achieve cloaking:

- ① cloaking by transformation optics;
- ② cloaking by anomalous localized resonance CALR.

Why in elliptical geometry?

- Explicit results known only for systems with circular geometries in \mathbb{R}^2 .
- Cloaking depends on the geometry of the problem.

Why study cloaking? Why in elliptical geometry?

Why study cloaking?

- Physical and engineering challenges and problems, such as the study and realization of **metamaterials**. [Alù, Engheta, (2005).]

Several suggestions based on metamaterials on how to achieve cloaking:

- ① cloaking by transformation optics;
- ② cloaking by anomalous localized resonance CALR.

Why in elliptical geometry?

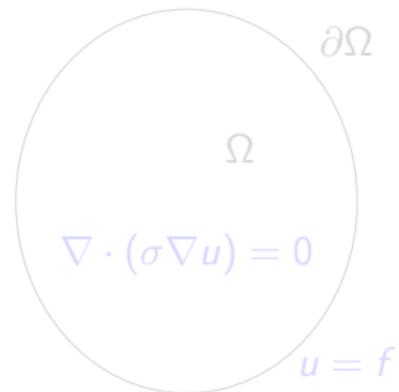
- Explicit results known only for systems with circular geometries in \mathbb{R}^2 .
- Cloaking depends on the geometry of the problem.

Cloaking by transformation optics - Electrical impedance tomography

$\Omega \subset \mathbb{R}^n$, $n \geq 2$, bounded domain.

$$\begin{cases} \nabla \cdot (\sigma \nabla u) = 0 & \text{in } \Omega, \\ u = f & \text{on } \partial\Omega, \end{cases}$$

$\sigma = (\sigma_{ij}) : \Omega \rightarrow \mathbb{R}^n$ is the *unknown* conductivity.



We use the Dirichlet to Neumann map

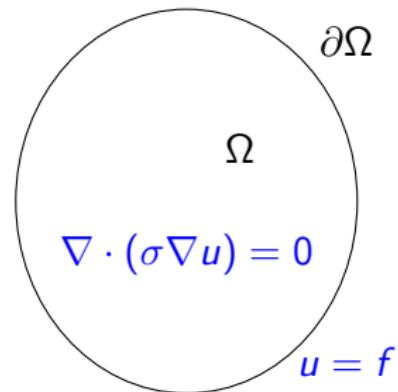
$$\Lambda_\sigma : u|_{\partial\Omega} \rightarrow (\sigma \nabla u) \cdot \bar{n}|_{\partial\Omega}.$$

Cloaking by transformation optics - Electrical impedance tomography

$\Omega \subset \mathbb{R}^n$, $n \geq 2$, bounded domain.

$$\begin{cases} \nabla \cdot (\sigma \nabla u) = 0 & \text{in } \Omega, \\ u = f & \text{on } \partial\Omega, \end{cases}$$

$\sigma = (\sigma_{ij}) : \Omega \rightarrow \mathbb{R}^n$ is the **unknown** conductivity.



We use the Dirichlet to Neumann map

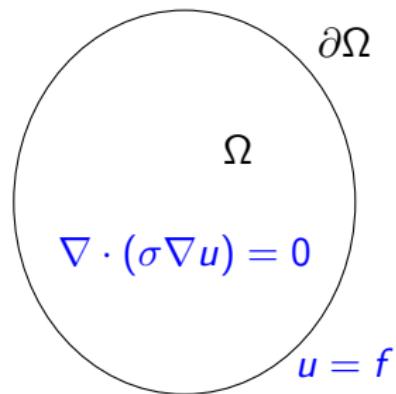
$$\Lambda_\sigma : u|_{\partial\Omega} \rightarrow (\sigma \nabla u) \cdot \bar{n}|_{\partial\Omega}.$$

Cloaking by transformation optics - Electrical impedance tomography

$\Omega \subset \mathbb{R}^n$, $n \geq 2$, bounded domain.

$$\begin{cases} \nabla \cdot (\sigma \nabla u) = 0 & \text{in } \Omega, \\ u = f & \text{on } \partial\Omega, \end{cases}$$

$\sigma = (\sigma_{ij}) : \Omega \rightarrow \mathbb{R}^n$ is the **unknown** conductivity.



We use the Dirichlet to Neumann map

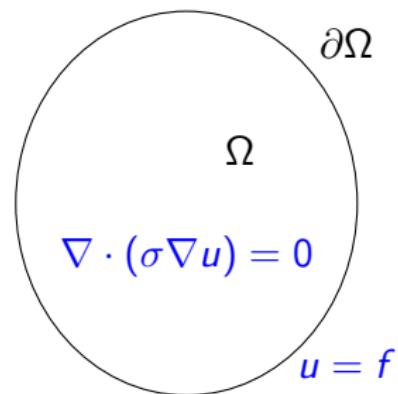
$$\Lambda_\sigma : u|_{\partial\Omega} \rightarrow (\sigma \nabla u) \cdot \bar{n}|_{\partial\Omega}.$$

Cloaking by transformation optics - Electrical impedance tomography

$\Omega \subset \mathbb{R}^n$, $n \geq 2$, bounded domain.

$$\begin{cases} \nabla \cdot (\sigma \nabla u) = 0 & \text{in } \Omega, \\ u = f & \text{on } \partial\Omega, \end{cases}$$

$\sigma = (\sigma_{ij}) : \Omega \rightarrow \mathbb{R}^n$ is the **unknown** conductivity.



We use the Dirichlet to Neumann map

$$\Lambda_\sigma : u|_{\partial\Omega} \rightarrow (\sigma \nabla u) \cdot \bar{n}|_{\partial\Omega}.$$

Change of variables

Λ_σ allows us to determine σ at its best at less than a change of variables.

Proposition

Let $F : \Omega \rightarrow \Omega$ be such that $F(x) = x$ at $\partial\Omega$. Then the boundary measurements associated with σ and $F_*\sigma$ are identical, i.e. $\Lambda_\sigma(f) = \Lambda_{F_*\sigma}(f)$ for all f .

$F_*\sigma$ is the push-forward of σ by the change of variables F :

$$F_*\sigma(y) = \frac{1}{\det(DF(x))} DF(x)\sigma(x)(DF(x))^T.$$

→ Cloaking is possible!

Change of variables

Λ_σ allows us to determine σ at its best at less than a change of variables.

Proposition

Let $F : \Omega \rightarrow \Omega$ be such that $F(x) = x$ at $\partial\Omega$. Then the boundary measurements associated with σ and $F_*\sigma$ are identical, i.e. $\Lambda_\sigma(f) = \Lambda_{F_*\sigma}(f)$ for all f .

$F_*\sigma$ is the push-forward of σ by the change of variables F :

$$F_*\sigma(y) = \frac{1}{\det(DF(x))} DF(x)\sigma(x)(DF(x))^T.$$

→ Cloaking is possible!

Change of variables

Λ_σ allows us to determine σ at its best at less than a change of variables.

Proposition

Let $F : \Omega \rightarrow \Omega$ be such that $F(x) = x$ at $\partial\Omega$. Then the boundary measurements associated with σ and $F_*\sigma$ are identical, i.e. $\Lambda_\sigma(f) = \Lambda_{F_*\sigma}(f)$ for all f .

$F_*\sigma$ is the push-forward of σ by the change of variables F :

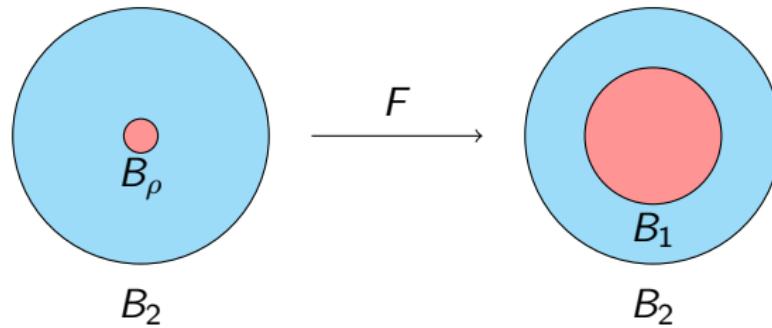
$$F_*\sigma(y) = \frac{1}{\det(DF(x))} DF(x)\sigma(x)(DF(x))^T.$$

→ Cloaking is possible!

Change of variables

There exists a transformation $F : \Omega \rightarrow \Omega$ such that

- F is continuous and piecewise smooth;
- $F(B_\rho(0)) = B_1(0)$ while $F(B_2(0)) = B_2(0)$;
- $F(x) = x$ at the boundary $\partial B_2(0)$.

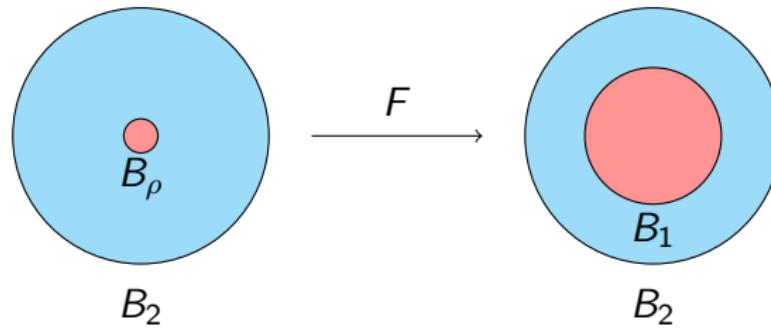


The content of $B_1(0)$ is **cloaked**, but its presence is known.
→ $B_1(0)$ is **near-cloaked**.

Change of variables

There exists a transformation $F : \Omega \rightarrow \Omega$ such that

- F is continuous and piecewise smooth;
- $F(B_\rho(0)) = B_1(0)$ while $F(B_2(0)) = B_2(0)$;
- $F(x) = x$ at the boundary $\partial B_2(0)$.



The content of $B_1(0)$ is **cloaked**, but its presence is known.
→ $B_1(0)$ is **near-cloaked**.

Results in circular geometry

Theorem

Suppose that the shell $B_2(0) \setminus B_1(0)$ has conductivity $F_* 1$. If ρ is small enough, then $B_1(0)$ is nearly cloaked, i.e. there exists some constant $C > 0$ such that

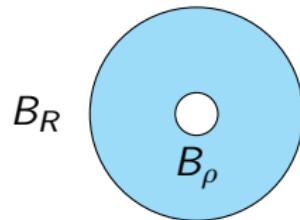
$$\|\Lambda_{\sigma_A} - \Lambda_1\| \leq C\rho^2.$$

The proof is based on problems with dielectric inclusions.

Dielectric inclusions

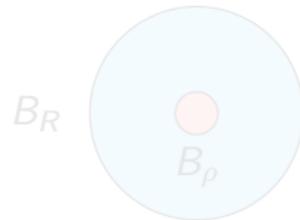
Perfect insulation problem:

$$\begin{cases} \Delta u_0^\rho = 0 & \text{in } B_R(0) \setminus \overline{B_\rho(0)}, \\ u_0^\rho = f & \text{on } \partial B_R(0), \\ \frac{\partial u_0^\rho}{\partial \bar{n}} = 0 & \text{on } \partial B_\rho(0), \end{cases}$$



Perfect conductivity problem:

$$\begin{cases} \Delta u_\infty^\rho = 0 & \text{in } B_R(0) \setminus \overline{B_\rho(0)}, \\ u_\infty^\rho = f & \text{on } \partial B_R(0), \\ u_\infty^\rho = c_\infty & \text{on } \partial B_\rho(0), \end{cases}$$



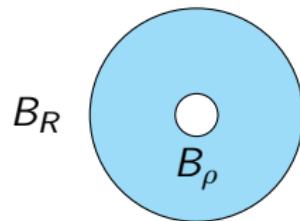
Calculate Λ_0^ρ , Λ_∞^ρ and estimate:

$$\|\Lambda_1 - \Lambda_0^\rho\| \leq C\rho^2 \quad \|\Lambda_1 - \Lambda_\infty^\rho\| \leq C\rho^2$$

Dielectric inclusions

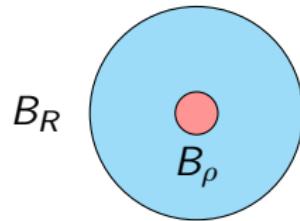
Perfect insulation problem:

$$\begin{cases} \Delta u_0^\rho = 0 & \text{in } B_R(0) \setminus \overline{B_\rho(0)}, \\ u_0^\rho = f & \text{on } \partial B_R(0), \\ \frac{\partial u_0^\rho}{\partial \bar{n}} = 0 & \text{on } \partial B_\rho(0), \end{cases}$$



Perfect conductivity problem:

$$\begin{cases} \Delta u_\infty^\rho = 0 & \text{in } B_R(0) \setminus \overline{B_\rho(0)}, \\ u_\infty^\rho = f & \text{on } \partial B_R(0), \\ u_\infty^\rho = c_\infty & \text{on } \partial B_\rho(0), \end{cases}$$



Calculate Λ_0^ρ , Λ_∞^ρ and estimate:

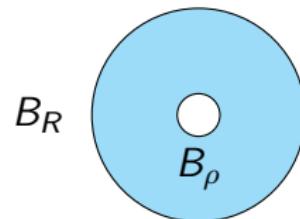
$$\|\Lambda_1 - \Lambda_0^\rho\| \leq C\rho^2$$

$$\|\Lambda_1 - \Lambda_\infty^\rho\| \leq C\rho^2$$

Dielectric inclusions

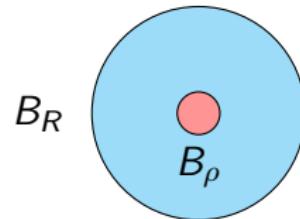
Perfect insulation problem:

$$\begin{cases} \Delta u_0^\rho = 0 & \text{in } B_R(0) \setminus \overline{B_\rho(0)}, \\ u_0^\rho = f & \text{on } \partial B_R(0), \\ \frac{\partial u_0^\rho}{\partial \bar{n}} = 0 & \text{on } \partial B_\rho(0), \end{cases}$$



Perfect conductivity problem:

$$\begin{cases} \Delta u_\infty^\rho = 0 & \text{in } B_R(0) \setminus \overline{B_\rho(0)}, \\ u_\infty^\rho = f & \text{on } \partial B_R(0), \\ u_\infty^\rho = c_\infty & \text{on } \partial B_\rho(0), \end{cases}$$



Calculate Λ_0^ρ , Λ_∞^ρ and estimate:

$$\|\Lambda_1 - \Lambda_0^\rho\| \leq C\rho^2 \quad \|\Lambda_1 - \Lambda_\infty^\rho\| \leq C\rho^2$$

Results in elliptic geometry I

Theorem

Assume that $f = \sum_{k \in \mathbb{Z}} f_k e^{ik\nu}$ with $f_k = 0$ for all $|k| < k_0$, and $f_{k_0} \neq 0$. Then there exists $C > 0$ depending only on R such that

$$\|\Lambda_1 - \Lambda_0^\rho\| \geq Ck_0|f_{k_0}|e^{2k_0\rho}$$

$$\|\Lambda_1 - \Lambda_\infty^\rho\| \geq Ck_0|f_{k_0}|e^{2k_0\rho}.$$

With this procedure there is no cloaking in elliptic geometry!

Why? The size of the inclusions matters!

Theorem

Assume that $f = \sum_{k \in \mathbb{Z}} f_k e^{ik\nu}$ with $f_k = 0$ for all $|k| < k_0$, and $f_{k_0} \neq 0$. Then there exists $C > 0$ depending only on R such that

$$\|\Lambda_1 - \Lambda_0^\rho\| \geq Ck_0|f_{k_0}|e^{2k_0\rho}$$

$$\|\Lambda_1 - \Lambda_\infty^\rho\| \geq Ck_0|f_{k_0}|e^{2k_0\rho}.$$

With this procedure there is no cloaking in elliptic geometry!

Why? The size of the inclusions matters!

Results in elliptic geometry II

Theorem

Suppose the source $f : \partial\mathcal{E}_R(0) \rightarrow \mathbb{R}$, $f \in C^1$, is high-frequency monochromatic, that is, there is a large $k_0 \in \mathbb{N}$ such that $f = f_{k_0} e^{ik_0 \nu}$. Then there exists some constant $C > 0$ such that

$$\left\| \frac{\partial u_1}{\partial \bar{n}} - \frac{\partial u_0^\rho}{\partial \bar{n}} \right\|_{L^2(\partial\mathcal{E}_R(0))} \leq \frac{C}{k_0} \quad \text{and} \quad \left\| \frac{\partial u_1}{\partial \bar{n}} - \frac{\partial u_\infty^\rho}{\partial \bar{n}} \right\|_{L^2(\partial\mathcal{E}_R(0))} \leq \frac{C}{k_0}.$$

Cloaking by anomalous localized resonance - The problem

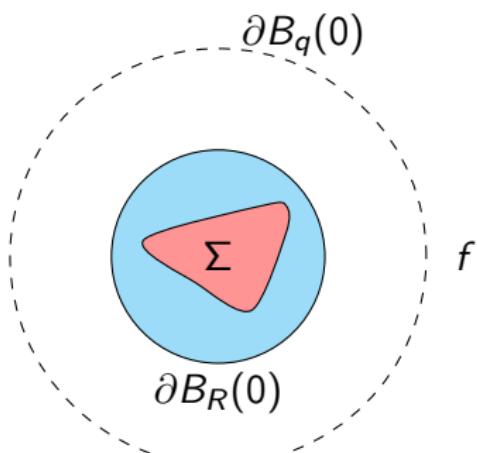
$$\begin{cases} \nabla \cdot (a_\eta \nabla u_\eta) = f & \text{in } \mathbb{R}^2, \\ u_\eta \rightarrow 0 & \text{as } |x| \rightarrow \infty. \end{cases}$$

$a_\eta = A(x) + i\eta$ is the electric permittivity:

- $A(x)$ has a core-shell-matrix character:

$$A(x) = \begin{cases} +1 & \text{in the core } \Sigma, \\ -1 & \text{in the shell } B_R \setminus \Sigma, \\ +1 & \text{in the matrix } \mathbb{R}^2 \setminus B_R. \end{cases}$$

- $\eta > 0$ is a loss parameter;



The source f is supported on $\partial B_q(0)$, $q > R$.

Cloaking by anomalous localized resonance - The problem

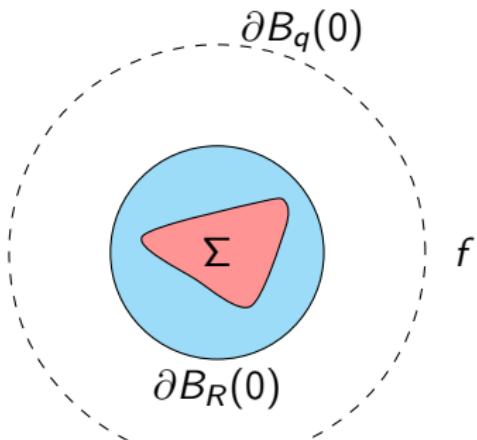
$$\begin{cases} \nabla \cdot (a_\eta \nabla u_\eta) = f & \text{in } \mathbb{R}^2, \\ u_\eta \rightarrow 0 & \text{as } |x| \rightarrow \infty. \end{cases}$$

$a_\eta = A(x) + i\eta$ is the electric permittivity:

- $A(x)$ has a core-shell-matrix character:

$$A(x) = \begin{cases} +1 & \text{in the core } \Sigma, \\ -1 & \text{in the shell } B_R \setminus \Sigma, \\ +1 & \text{in the matrix } \mathbb{R}^2 \setminus B_R. \end{cases}$$

- $\eta > 0$ is a loss parameter;



The source f is supported on $\partial B_q(0)$, $q > R$.

Cloaking by anomalous localized resonance - The problem

$$\begin{cases} \nabla \cdot (a_\eta \nabla u_\eta) = f & \text{in } \mathbb{R}^2, \\ u_\eta \rightarrow 0 & \text{as } |x| \rightarrow \infty. \end{cases}$$

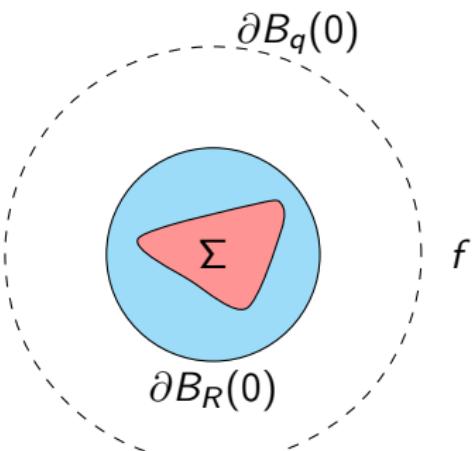
$a_\eta = A(x) + i\eta$ is the electric permittivity:

- $A(x)$ has a core-shell-matrix character:

$$A(x) = \begin{cases} +1 & \text{in the core } \Sigma, \\ -1 & \text{in the shell } B_R \setminus \Sigma, \\ +1 & \text{in the matrix } \mathbb{R}^2 \setminus B_R. \end{cases}$$

- $\eta > 0$ is a loss parameter;

The source f is supported on $\partial B_q(0)$, $q > R$.



Cloaking by anomalous localized resonance - The problem

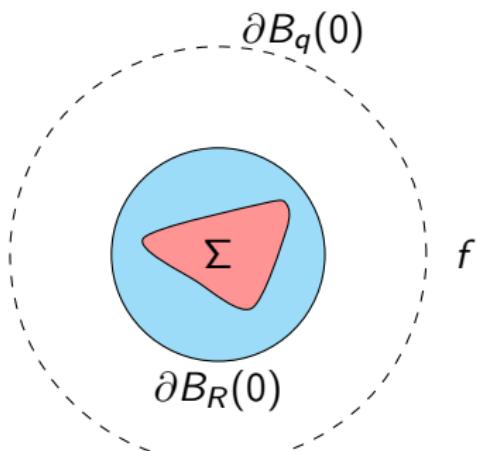
$$\begin{cases} \nabla \cdot (a_\eta \nabla u_\eta) = f & \text{in } \mathbb{R}^2, \\ u_\eta \rightarrow 0 & \text{as } |x| \rightarrow \infty. \end{cases}$$

$a_\eta = A(x) + i\eta$ is the electric permittivity:

- $A(x)$ has a core-shell-matrix character:

$$A(x) = \begin{cases} +1 & \text{in the core } \Sigma, \\ -1 & \text{in the shell } B_R \setminus \Sigma, \\ +1 & \text{in the matrix } \mathbb{R}^2 \setminus B_R. \end{cases}$$

- $\eta > 0$ is a loss parameter;



The source f is supported on $\partial B_q(0)$, $q > R$.

Anomalous localized resonance

Energy of the solution:

$$\mathcal{E}_\eta = \frac{\eta}{2} \int_{\mathbb{R}^2} |\nabla u_\eta|^2 dx$$

When $\eta \rightarrow 0$

- Anomalous Localized Resonance occurs: $|\nabla u_\eta|$ diverges in a specific region while it converges smoothly outside this region. No dipedence from a_η .
- Normalize the problem by $\alpha_\eta \in \mathbb{R}$, with $\alpha_\eta \rightarrow 0$.
- $\alpha_\eta \nabla u_\eta \rightarrow 0$: the source f and the structure are cloaked!

Anomalous localized resonance

Energy of the solution:

$$\mathcal{E}_\eta = \frac{\eta}{2} \int_{\mathbb{R}^2} |\nabla u_\eta|^2 dx$$

When $\eta \rightarrow 0$

- Anomalous Localized Resonance occurs: $|\nabla u_\eta|$ diverges in a specific region while it converges smoothly outside this region. No dipedence from a_η .
- Normalize the problem by $\alpha_\eta \in \mathbb{R}$, with $\alpha_\eta \rightarrow 0$.
- $\alpha_\eta \nabla u_\eta \rightarrow 0$: the source f and the structure are cloaked!

Anomalous localized resonance

Energy of the solution:

$$\mathcal{E}_\eta = \frac{\eta}{2} \int_{\mathbb{R}^2} |\nabla u_\eta|^2 dx$$

When $\eta \rightarrow 0$

- **Anomalous Localized Resonance** occurs: $|\nabla u_\eta|$ diverges in a specific region while it converges smoothly outside this region. No dipedence from a_η .
- Normalize the problem by $\alpha_\eta \in \mathbb{R}$, with $\alpha_\eta \rightarrow 0$.
- $\alpha_\eta \nabla u_\eta \rightarrow 0$: the source f and the structure are cloaked!

Anomalous localized resonance

Energy of the solution:

$$\mathcal{E}_\eta = \frac{\eta}{2} \int_{\mathbb{R}^2} |\nabla u_\eta|^2 dx$$

When $\eta \rightarrow 0$

- **Anomalous Localized Resonance** occurs: $|\nabla u_\eta|$ diverges in a specific region while it converges smoothly outside this region. No dipendence from a_η .
- Normalize the problem by $\alpha_\eta \in \mathbb{R}$, with $\alpha_\eta \rightarrow 0$.
- $\alpha_\eta \nabla u_\eta \rightarrow 0$: the source f and the structure are cloaked!

Anomalous localized resonance

Energy of the solution:

$$\mathcal{E}_\eta = \frac{\eta}{2} \int_{\mathbb{R}^2} |\nabla u_\eta|^2 dx$$

When $\eta \rightarrow 0$

- **Anomalous Localized Resonance** occurs: $|\nabla u_\eta|$ diverges in a specific region while it converges smoothly outside this region. No dipendence from a_η .
- Normalize the problem by $\alpha_\eta \in \mathbb{R}$, with $\alpha_\eta \rightarrow 0$.
- $\alpha_\eta \nabla u_\eta \rightarrow 0$: the source f and the structure are cloaked!

Cloaking results in the litterature

Spectral theory techniques:

- Ammari, Ciraolo, Kang, Lee, Milton proved that in circular geometry (core = B_r , shell = B_R) cloaking happens only if $q < R^*$, where

$$R^* = r \left(\frac{R}{r} \right)^{3/2}.$$

[Ammari, Ciraolo, Kang, Lee, Milton, (2013).]

Milton and Nicorovici performed numerical simulations which confirm R^* .

- Chung, Kang, Kim, Lee proved that in elliptic geometry cloaking happens only if $q < R^*$, where

$$R^* = \begin{cases} (3R - r)/2 & \text{for } R \leq 3r, \\ 2(R - r) & \text{for } R > 3r, \end{cases}$$

if core = \mathcal{E}_r , shell = \mathcal{E}_R , where

$$\mathcal{E}_r = \left\{ (x, y) \in \mathbb{R}^2 : \frac{x^2}{\cosh^2 r} + \frac{y^2}{\sinh^2 r} \leq a^2 \right\}.$$

Cloaking results in the litterature

Spectral theory techniques:

- Ammari, Ciraolo, Kang, Lee, Milton proved that in circular geometry (core = B_r , shell = B_R) cloaking happens only if $q < R^*$, where

$$R^* = r \left(\frac{R}{r} \right)^{3/2}.$$

[Ammari, Ciraolo, Kang, Lee, Milton, (2013).]

Milton and Nicorovici performed numerical simulations which confirm R^* .

- Chung, Kang, Kim, Lee proved that in elliptic geometry cloaking happens only if $q < R^*$, where

$$R^* = \begin{cases} (3R - r)/2 & \text{for } R \leq 3r, \\ 2(R - r) & \text{for } R > 3r, \end{cases}$$

if core = \mathcal{E}_r , shell = \mathcal{E}_R , where

$$\mathcal{E}_r = \left\{ (x, y) \in \mathbb{R}^2 : \frac{x^2}{\cosh^2 r} + \frac{y^2}{\sinh^2 r} \leq a^2 \right\}.$$

Cloaking results in the litterature

Spectral theory techniques:

- Ammari, Ciraolo, Kang, Lee, Milton proved that in circular geometry (core = B_r , shell = B_R) cloaking happens only if $q < R^*$, where

$$R^* = r \left(\frac{R}{r} \right)^{3/2}.$$

[Ammari, Ciraolo, Kang, Lee, Milton, (2013).]

Milton and Nicorovici performed numerical simulations which confirm R^* .

- Chung, Kang, Kim, Lee proved that in elliptic geometry cloaking happens only if $q < R^*$, where

$$R^* = \begin{cases} (3R - r)/2 & \text{for } R \leq 3r, \\ 2(R - r) & \text{for } R > 3r, \end{cases}$$

if core = \mathcal{E}_r , shell = \mathcal{E}_R , where

$$\mathcal{E}_r = \left\{ (x, y) \in \mathbb{R}^2 : \frac{x^2}{\cosh^2 r} + \frac{y^2}{\sinh^2 r} < a^2 \right\}.$$

Variational methods

Khon, Lu, Schweizer, Weinsten approach based on two **dual variational principles**. [Khon, Lu, Schweizer, Weinsten, (2012).]

- Primal variational principles: $\mathcal{E}_\eta \leq \mathcal{I}_\eta$, used to prove that cloaking does not happen.
- Dual variational principles: $\mathcal{E}_\eta \geq \mathcal{J}_\eta$, used to prove that cloaking happens.

↔ based on test functions.

Variational methods

Khon, Lu, Schweizer, Weinsten approach based on two **dual variational principles**. [Khon, Lu, Schweizer, Weinsten, (2012).]

- Primal variational principles: $\mathcal{E}_\eta \leq \mathcal{I}_\eta$, used to prove that cloaking does not happen.
- Dual variational principles: $\mathcal{E}_\eta \geq \mathcal{J}_\eta$, used to prove that cloaking happens.

~~ based on test functions.

Variational methods

Khon, Lu, Schweizer, Weinsten approach based on two **dual variational principles**. [Khon, Lu, Schweizer, Weinsten, (2012).]

- Primal variational principles: $\mathcal{E}_\eta \leq \mathcal{I}_\eta$, used to prove that cloaking does not happen.
- Dual variational principles: $\mathcal{E}_\eta \geq \mathcal{J}_\eta$, used to prove that cloaking happens.

~~~ based on test functions.

# Variational methods

Khon, Lu, Schweizer, Weinsten approach based on two **dual variational principles**. [Khon, Lu, Schweizer, Weinsten, (2012).]

- Primal variational principles:  $\mathcal{E}_\eta \leq \mathcal{I}_\eta$ , used to prove that cloaking does not happen.
- Dual variational principles:  $\mathcal{E}_\eta \geq \mathcal{J}_\eta$ , used to prove that cloaking happens.

↔ based on test functions.

# Results in elliptic geometry I

## Theorem (No core implies resonance for sources at any distance)

Assume that the configuration has no core (i.e.  $\Sigma = \emptyset$ ). Let  $f = F\mathcal{H}^1|_{\partial\mathcal{E}_R(0)}$  with  $0 \neq F : \partial\mathcal{E}_R(0) \rightarrow \mathbb{R}$  be a source at a distance  $q > R$ . Then

$$\mathcal{E}_\eta(u_\eta) \rightarrow +\infty \quad \text{as } \eta \rightarrow 0.$$

~~> Cloaking always happens

~~> Dual variational principle

# Results in elliptic geometry II

## Theorem (Non-resonance beyond $R^*$ )

Let  $\Sigma = \mathcal{E}_r(0) \subset \mathcal{E}_R(0)$  and let  $A(x) = +1$  in  $\Sigma$  and  $\mathbb{R}^2 \setminus \mathcal{E}_R(0)$ ,  $A(x) = -1$  in  $\mathcal{E}_R(0) \setminus \Sigma$ .

Let  $f = F\mathcal{H}^1|_{\partial\mathcal{E}_q(0)}$ ,  $0 \neq F : \partial\mathcal{E}_q(0) \rightarrow \mathbb{R}$ , be a source at a distance  $q > R$  with zero average and  $F \in L^2(\partial\mathcal{E}_q(0))$ . Then the configuration is non-resonant if  $q > R^*$  where

$$R^* = (3R - r)/2$$

Thank you for the attention

# Elliptic coordinates

## Definition

The elliptical coordinates  $(\mu, \nu) \in [0, +\infty) \times [0, 2\pi)$  on  $\mathbb{R}^2$  are defined via

$$\begin{cases} x = a \cosh \mu \cos \nu \\ y = a \sinh \mu \sin \nu \end{cases}$$

where  $a > 0$ .

- The coordinate  $\mu$  is called the **elliptic radius**.
- The coordinate lines are hyperbolae and ellipses.
- We define the elliptical region

$$\mathcal{E}_r(0) = \left\{ (x, y) \in \mathbb{R}^2 : \frac{x^2}{\cosh^2 r} + \frac{y^2}{\sinh^2 r} < a^2 \right\}.$$

# The dual variational principles

Set  $u_\eta = v_\eta + i/\eta w_\eta$ , then

$$\nabla \cdot (a_\eta \nabla u_\eta) = f \iff \begin{cases} \nabla \cdot (A \nabla v_\eta) - \Delta w_\eta &= f, \\ \nabla \cdot (A \nabla w_\eta) + \eta^2 \Delta v_\eta &= 0 \end{cases}$$

The energy becomes

$$\mathcal{E}_\eta = \frac{\eta}{2} \int_{\mathbb{R}^2} |\nabla u_\eta|^2 dx \Rightarrow \mathcal{I}_\eta = \frac{\eta}{2} \int_{\mathbb{R}^2} |\nabla v_\eta|^2 dx + \frac{1}{2\eta} \int_{\mathbb{R}^2} |\nabla w_\eta|^2 dx$$

- PVP: the solution of the original problem is obtained by minimizing  $\mathcal{E}_\eta$ , so we minimize  $\mathcal{I}_\eta$  with the constraint  $\nabla \cdot (A \nabla v) - \Delta w = f$ .
- DVP: we take the Legendre transform of  $\mathcal{I}_\eta$

$$\mathcal{J}_\eta = \int_{\mathbb{R}^2} f \psi dx - \frac{\eta}{2} \int_{\mathbb{R}^2} |\nabla v|^2 dx - \frac{1}{2\eta} \int_{\mathbb{R}^2} |\nabla \psi|^2 dx$$

then we maximize  $\mathcal{J}_\eta$  with the constraint  $\nabla \cdot (A \nabla \psi) + \eta \Delta v = 0$ .