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Introduction

The ability to hide objects from electromagnetic, to make them “cloaked”, has recently become a
topic of both physical and mathematical interest [1, 22]. In recent years, great advances in materials
science have opened the door to the creation of materials with unique optical properties, the
so-called metamaterials. Metamaterials are characterized by customizable properties, such as the
refractive index n(x) for geometric optics, the electrical permittivity (z), magnetic permeability
w(z) for vector optics and the conductivity o(x), which appears in the static limit of Maxwell’s
equations. These metamaterials are made via macroscopic cellular structures that are not present in
nature [17].

In the last twenty years several proposals on cloaking have appeared in the physical and mathemati-
cal literature, taking advantage of the properties offered by these metamaterials. Among these, two
appear to be particularly promising: cloaking by transformation optics, and cloaking by anomalous
localized resonance (CALR).

The first proposal uses metamaterials to build particular structures, the cloaking devices.
Transformation optics exploit the transformation laws of an elliptic differential equation and the
electrical conductive o to create structures that appear equivalent when viewed from the outside,
but that are different inside. Cloaking by transformation optics is closely related to electrical
impedance tomography, which seeks to determine the conductivity ¢ through the knowledge of
the Dirichlet-to-Neumann (or voltage-to-current) map A,.

The point is the following. The information on the conductivity ¢ of a bounded domain 2 can be
determined from A, only up to a change of variables F'. We therefore have two possibilities. We
can change the coordinates in (2, write ¢ in the new coordinates, and observe that the physical
measurements at boundary 92 do not change. We can also leave the coordinates fixed in §2, change
the conductivity o, interpreting it as physically present in the system, and observe that the physical
measurements at the boundary 0€2 do not change. Following this second possibility we can modify
the inside of 2, for example by inserting an object that we want to hide. In principle, not only is
the object hidden, but also the structure that hosts the object is not noticeable. We therefore have a
cloaking device. This approach is the most used in the applications.

The second proposal, cloaking by anomalous localized resonance, exploits the mathematical
phenomenon called anomalous localized resonance (ALR). The existence of ALR is linked to
the fact that certain elliptic PDEs can exhibit localization effects near the boundary of ellipticity,
causing the energy of the solution to diverge although the solution remains bounded outside some
compact set [2]. Indeed, if an electromagnetic source produces a potential whose associated energy
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diverges in a specific region, the shell of the cloaking device, the system reacts by causing the
potential to vanish outside a compact set. Since it is not possible to measure an appreciable potential
from the outside, then the source is not detectable, making it cloaked.

This work started with the idea of studying a physically interesting phenomenon such as electromag-
netic cloaking through mathematical methods accessible to an under-graduated physics student.

The present work aims to extend some results on transformation optics and CALR, namely [19]
and [20], which provide theoretical results on cloaking and explicit estimates in circular geometry
systems. More precisely, our goal is both to provide a theoretical introduction to cloaking and to
present explicit results in elliptical geometry, where methods for representing solutions are still
available.

Outline

This thesis is organized as follows. Further preliminary details are given at the beginning of each
chapter.

Chapter 1 provides some preliminary information necessary for what follows. In particular, we
introduce some basic definitions and ideas on partial differential equations (PDEs), such as the
definition of a weak solution. We then introduce an explicit method for solving PDE, the method of
separation of variables. Finally we construct the elliptical coordinate system in the plane, showing
how it is related to the polar coordinate system.

In Chapter 2 we discuss cloaking by transformation optics. In presenting our arguments we mainly
follow [19]. We first introduce electrical impedance tomography and the Dirichlet-to-Neumann
map, then discuss how these two topics are related to electromagnetic cloaking. Our main results
are Theorem 2.3.1 and Theorem 2.3.2, where we study the problem in an elliptical setting.

In Chapter 3 we discuss cloaking by anomalous localized resonance. We will follow the ideas in
[20]. After introducing the differential problem under consideration, we analyze two ways to show
ALR: via spectral theory and via variational principles, [2] and [20], respectively. We will follow the
second method. The study of this problem in an elliptical setting has already been done in [9] by
following the spectral approach in [2]. In Theorem 3.4.1 and Theorem 3.4.2 we study the problem
via the variational approach presented in [20].
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Here is a list of the recurrent symbols in this work.
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The Euclidean norm.

The Euclidean scalar product.

The norm of the space X.

The open ball with radius r and center z.

The open ellipse with elliptic radius r and center z.

The boundary of €.

The Laplacian.

The gradient.

The Lebesgue measure.

The 1-dimensional Hausdorff measure restricted to the set 9f2.

The space of square-summable sequences with values in F = {R, C}.

The space of infinite differentiable functions with compact support defined on (.
The space of functions which are integrable on every compact subset of (2.

The Lebesgue space of functions which are square-integrable on ().

The Lebesgue space of essentially bounded measurable functions €.

The space of functions which are square-integrable and whose weak gradient is L? in (2.

The dual space of H' ().



Chapter 1

Preliminaries

In this Chapter we introduce some notions which will be useful trough this thesis. In Section 1.1 we
briefly recall some basic facts on the analysis of Partial Differential Equations (PDEs), such as the
well posedness and the classical and weak formulation of solution as well as one of the methods
to explicitly solve Laplace’s equation: the method of separation of variables. In Section 1.2 we
construct the elliptic coordinate system and we show that Laplace’s equation is separable in this
coordinates system. Section 1.3 is devoted to show how this coordinates system can be obtained
through complex analysis. In particular we point out how the elliptic coordinates system is related
to the polar one.

1.1 Some basic facts on PDE

In this section we recall some definitions, challenges and problems in the analysis of PDE. We first
define what a PDE is. Let ) C R" be open and fix k£ € N.

Definition 1.1.1. The equation
F(D*u(z), D*Yu(z), -, Du(z), u(z),z) =0 with z € Q (1.1)
is called a k'"-order partial differential equation, where
k k—1
F:R" xR" x---xR"xRxQ—=R

is a given function, and u : Q — R is the unknown and D* is a derivation operator of order k with
respect to one or more variables.

The definition of partial differential equation given in (1.1) is very general and opens the door
to a very broad theory, and for this reason it is very unlikely that it can be fully explored. Our
mathematical interest is addressed only to some PDEs: those that are important for applications,
and, in particular, great attention is given to PDEs that arise from physical problems. PDEs coming
from physics, in particular linear equations, represent a class that is already very rich of interesting
mathematical phenomena.
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In any case, given a PDE that describes a physical phenomenon, it is necessary to specify some
conditions on the solution if we want to describe a real physical situation. For this reason, a real
physical problem is described by the differential problem

{PDE defined in Q, (1.2)

boundary condition on 92.

Thus solving a PDE means finding all functions u that satisfy (1.1) together with some conditions
imposed on the boundary 0.

1.1.1 Well-posed problems, classical and weak solution

Given a differential problem (1.2) describing a physical situation, we are interested in quantitatively
studying the behavior of the solution. In particular, since we are modeling a physical problem, we
expect the existence and uniqueness of the solution. Furthermore, we expect that when the data
at the boundary changes a little, the solution also changes a little. These three requirements are
contained in the idea of a well-posed problem and it is due to Hadamard [15]. We say that a given
problem for a partial differential equation is well-posed if

1. the problem has a solution;
2. the solution is unique;
3. the solution depends continuously on the data assigned by the problem.
There are two strategies to achieve 1)—3). The first one consists in considering classical solution.

Definition 1.1.2. A classical solution of (1.1) defined in an open set 2 C R" is a function u € C*(Q2)
such that (1.1) is satisfied pointwise in (2.

Thus solving a PDE in the classical sense means finding a solution belonging to the space C*(2).
This fact, although desirable, turns out to be actually a big limitation since our proofs must check
that the solution is indeed smooth. And indeed the success of this strategy depends on the PDE that
we are investigating and, in general, this strategy turns out to be ineffective. Consider for example
the scalar conservation law

wp + (F(u)), = 0. (1.3)

In fluid dynamics, equation (1.3) guarantees the conservation of a mass of fluid in some domain. It
can be shown that (1.3) does not admit classical solutions [10]. However, the physical phenomena
described by (1.3) present shock waves. A shock wave is a propagating disturbance that moves
faster than the local speed of sound in the medium and it is characterized by a discontinuous
change in characteristic of the medium. Thus, these waves are not represented by functions u € C°.
Therefore, if we want to recover the underlying physics, these waves must be solution in some
weak sense of (1.2). These new solutions are called weak solutions and do not possess a priori the
regularity of classical solutions.

The weak solution idea paves the way for the second strategy. Solving a PDE now means finding a
solution in a larger class of functions, since the solution is no longer restricted to belonging to the
space C*(Q). Although this is only necessary for PDE like (1.3), PDE that are classically solvable
can also be treated weakly. Indeed this is a huge advantage in proofs: we don’t have to check the
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regularity of the solution when we show i) -ii); regularity can be recovered later on through theory
of regularity.

1.1.2 Weak formulation of the Laplace’s equation

Although the idea of a weak solution is a huge advantage in the study of PDE, the precise
definition of a weak solution depends on the problem that we are investigating. Since the cloaking
phenomenon arises from equations from equations that involve the Laplace operator, we briefly
discuss the weak formulations of these.

We now formulate existence and uniqueness results for three problems: Laplace’s equation with
inhomogeneous Dirichlet boundary condition, Laplace equation with mixed boundary condition
and a more general second-order differential problem.

In Chapter 2 we will study the problem

1.4)

Au=0 in €,
u=f on 012,

where  C R" is open with 9Q € C' and f : 92 — R is given. Problem (1.4) is the Laplace equation
with inhomogeneous Dirichlet boundary condition.

We derive a weak formulation for (1.4) by proceeding formally. Let v € C2°(Q2) be an arbitrary test
function. Multiply the PDE in (1.4) and integrate over 2 to obtain

0= / Auvdz, (1.5)
Q
for any v € C2°(12). Equation (1.5) is equivalent to the PDE in (1.4) if Au is smooth enough. Indeed,
the following lemma holds.

Lemma 1.1.1 (Fundamental lemma of the calculus of variations). If a function g € L;, () satisfies
Jogvdx =0 forall v € C(Q) then g = 0 almost everywhere.

Using Green’s formula we find

Oz/Auvdm:—/Vu-Vvdx—i—/ vn - Vudo
Q Q o0

where 7 is the unit normal vector to 0. Since v vanishes at the boundary, we have
/ Vu-Vvdr =0 Yo € C°(Q). (1.6)
Q

We can now recast the problem (1.6) into a functional framework, which is more suitable for the
weak formulation. A natural solution space is the Sobolev space H'(2). Without going into detail,
the Sobolev space H' () is the space of functions which are square-integrable and whose weak
gradient is square-integrable

HY(Q)={u:Q =R :uecL*Q), Vuec L*(R")}.
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By introducing the inner product
(u, v) g1y = (u,v) L2(0) + (Vu, Vo) r2(0)
defined for all u,v € H'(12), the space H'(2) becomes a separable Hilbert space.

Suppose now that f € H'(£2). We now have to account for the boundary condition in (1.4). We
have to be very careful if we look for solutions in H'(2). Indeed, as it happens for L?(2) spaces,
the elements of H'(Q2) are not functions, but equivalence classes of functions that agree almost
everywhere. Since 02 has measure zero in R” we cannot ask u = f on 052, and even worse we
cannot define v on 9f2. To solve this problem, we use the test functions once again. One way to
prescribe that v = f on the boundary 02 is to require that there exists a sequence of test functions
{¢x tren C C2°(£2) which approximates the difference u— f in the H'(2)-norm. Indeed, this request
is equivalent to asking that u — f = 0 near the boundary 052. The functional space that is created in
this process is the Sobolev space H{ (€2). In a more formal way, H} (1) is the closure of the space
C>(Q) of test functions with respect to the H'(Q2)-norm

rareyreny M| .
Hi (Q) = C=(Q) Q) _ {v: Q=R : Hprptren CCZ(Q), |lv— ‘PkHHl(Q) k—+ 0.

Definition 1.1.3. A function u € H'(Q) is called a weak solution of (1.4) if
1. [, Vu-Vude=0forallv e C();
2. u— fe HHQ).

The most important result is stated in the next theorem.

Theorem 1.1.1 (Dirichlet’s principle). Forall f € H' () there exists a unique weak solution u € H* ()
of (1.4).

Without going into the details of the proof, we mention that existence is based on showing that the
energy functional £ : H'(Q) — R given by

S(U):/Q|Vv|2dx

admits minimum in the subspace {v € H'(Q) : v — f € H}(Q)}. Indeed, the minimum of this
functional turns out to be a weak solution of (1.4). The uniqueness of the solution is then given by
Poincare’s inequality [5]. Via regularity theory it is then possible to show that a weak solution of
(1.4) is also a classical solution under appropriate assumptions on f. For example, if f € C* then
u € C*; but then using lemma (1.1.1) and the fact that u € C? we have Au = 0 everywhere in 2 and
u = f on 9f2. Hence the weak solution is actually a classic solution.

Later on in Chapter 2 we will study the Laplace’s equation with mixed boundary conditions. The
problem we are referring to is the following. Let 2, (2> be bounded and open domains in R" with
boundary of class C!. Assume that Q, C ; and set Q = Q, \ Q. For f € H!(Q) we consider the
problem

Au=0 in ,
u=f on 9, (1.7)
g*% =0 on 692

With techniques similar to those used previously, we can give a weak formulation of (1.7).
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Definition 1.1.4. A function u € H'(Q) is called a weak solution of (1.7) if

1. [,Vu-Vude=0forallve Hj(QUIN,);

2. u— f € HHQUIN).
Even for problem (1.7) it is shown that there exists only one weak solution.
Theorem 1.1.2. Forall f € H'(Q) there exists a unique weak solution u € H'(Q) of (1.7).

Although the results of Theorems 1.1.1 and 1.1.2 are very similar, their proofs use different
techniques. Indeed Theorem 1.1.2 proves the existence of the solution through the Fredholm
alternative, while uniqueness is proved through maximum principle. See [12] and reference therein
for further details on the weak generalization of problem (1.7).

Lastly, in Chapter 3 we will study the problem
{Lu —f in R,

1.8
u—0 for |z| — 4o0. (18

where L is a linear second order differential operator in divergence form

Lu=— Z @(aijaiu) =-V- (A(l‘) . VU),

ij=1

and f : R® — Ris given and such that

/" F@)dz =0,

This hypothesis will be justified in Chapter 3. Assume that a,;(z) € L>(R") for 1 <i,j < n and
that the matrix A = (a;;) is symmetric. Assume also that L satisfies the ellipticity condition, i.e.
there exists some constant o« > 0 such that

> ai(@)6& > alé]?, Vo eQ, VEeR™

ij=1

Proceeding in the same way as seen above we derive the weak formulation of (1.8). Multiplying the
PDE in (1.8) by a test function ¢ € Cg°(R™) and and integrating on R™ we have

—/ Z 0j(a;j0u)pdr = fodz.

ij=1 R

Integrating the first term by parts we find

/ Z a;;0;u 0o dx = fodx. (1.9)

ij=1 R

Note that to make sense of the right-hand side of the above equation (1.9) it is necessary to require
f € L*(R™). Furthermore, the left-hand side of the equation (1.9) can be interpreted in functional
terms. Indeed, if we look for solutions u € H'(R™), we can use the density of C2°(R") in H'(R")
[10] to rewrite the first term as a bilinear map on H'(R™).
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Definition 1.1.5. The bilinear form associate with PDE of problem (1.8) is the bilinear map « :
H'(R™) x H'(R™) — R given by

a(u,v) :/ Z a;jOudvdr  Yu,v € HY(R™).

ij=1

Equation (1.8) can then be rewritten in a weak form.

Definition 1.1.6. A function u € H*(R") is called a weak solution of (1.8) if
a(u,v) = (f,v)r2@n)

forallv € H*(R™).

The symmetry of the coefficients ensures that the bilinear form a is symmetric. A simple estimate
shows also that a is continuous. Furthermore, the ellipticity hypothesis proves that the bilinear form
is coercive. Hence we can apply Lax-Milgram’s lemma and deduce the following theorem.

Theorem 1.1.3. Forany f € L?(R™) there exists a unique weak solution u € H*(R™) of (1.8). Moreover,

u is obtained by
| { 1 /
min -
veHI(R™) | 2 Jp

1.1.3 The method of separation of variables

n

a;;0;u 0jv dx — / fo dz}.
1

n n
)=

Once we have proved existence and uniqueness of weak solutions for a given differential problem,
we can look for the explicit form of the solution. As far we know, there are a few techniques
to explicitly solve a PDE. For linear PDEs, like Laplace equation, an effective technique is the
method of separation of variables. Let us now analyze the theoretical presuppositions behind this
method.

Fix p € [1,+400). Letbe E C R™ and F C R™ two measurable sets. Take two functions vg € LP(E),
wp € LP(F) and consider the function v : E x F' — R defined by u(z,y) = vg(z)wr(y).

Since vy and wp are not defined pointwise, the function u is not defined pointwise as well. Fubini’s
theorem assures that if £ C F is with zero measure in R, then the set F' x F has zero measure in
R™xR™. A similar reasoning is valid for F'. This proves that « is well defined as an equivalence class
of functions equal almost everywhere. Fubini’s theorem guarantees also that u € LP(E x F).

We call LP(E) ® LP(F) the linear subspace of LP(E x F') generated by the function built according
to the previous process. This space is called the product tensor space. The following theorem
holds.

Theorem 1.1.4. The space LP(E) @ LP(F) is dense in LP(E x F).

Proof. The proof is based on the following observation. It is known [23] that step functions, i.e.
functions that belong to the vector space generated by the characteristic y  as E varies between the
closed rectangles of R", are dense in L?(R™ x R™). A simple extension of the argument that led
to this statement shows that step functions are dense also in the space L(E x F'). To complete the
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proof of the thesis it is sufficient to observe that every rectangle @ C E x F' of E x F is the Cartesian
product of a rectangle () contained in £ and a Q) contained in F. Writing @ = Qg x Qr we have
xo(z,y) = x0r(%)Xq-(y) and this proves the thesis, since xq, € LP(F) and xg, € LP(F). O

For all p € [1,+400) the space LP(F) is separable, i.e. there exists a countable dense subset. In
particular, the Hilbert space L?(E) is separable. However, this is equivalent to the existence of a
complete orthonormal system. As a consequence, the following result holds.

Corollary 1.1.4.1. Let E C R™ and F C R™ two measurable sets. Let {¢n, }nen be an orthonormal basis of
L2(E) and {4y } ken be an orthonormal basis of L (F). Then the family of functions {05,y }n ken defined by
On.k(z,y) = én(x)Yr(y) is an orthonormal basis of L>(E x F).

Proof. Starting from the definition and using Fubini’s Theorem, it is immediate to verify that the
0y, are an orthonormal system. The completeness follows from the completeness of the single
systems {&p, trhen, {¥k ren in the respective spaces, and from the previous theorem. O

We are now ready to discuss the method of separation of variables. We want to find an explicit
form for weak solutions of Laplace equation

Au=0

in a rectangular domain Q = E x F. Since u € H'(12) is a weak solution, we have u € L?*(). Then,
the previous corollary (1.1.4.1) ensures that

u(z,y) = Z Chibni(z,y) = Z Ch.xdn ()i (y), (1.10)

h, keEN h, keN

where {¢}, }ren is an orthonormal basis of L?(E) and {¢ }xen is an orthonormal basis of L?(F), and
{Chk}nken C I2(C). The method of separation of variables consists then in finding the solutions
Op,.1(z,y) of Laplace’s equation which factorize in the product ¢, ()¢ (y) of functions that depend
on disjoint variables, and then writing the most general solution « as in (1.10). To be more precise
we should verify that {¢p, }nen and {x }ren constitute an orthonormal system of L?(E) and L*(F),
respectively. This is indeed true, as stated in Theorem A.1, but the point is a bit technical. See
Appendix A for more details.

1.2 Elliptic Coordinates

In this section we introduce the elliptic coordinate system on the plane R?. Since in Chapters 2
and 3 we study cloaking in elliptical geometries, we discuss the shape of ellipses in this coordinate
system. Lastly we present calculus in the elliptic coordinate system.

1.2.1 Definitions

Elliptical coordinates are an orthogonal curvilinear system of coordinates for the plane R?. In
this coordinate system, each point (z,y) € R? is identified by two numbers p € [0,+0c0), v €
[0, 27).
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Figure 1.1: The figure shows several coordinated lines. In red we see the ellipses, corresponding to
constant y; in blue the hyperbolae, corresponding to constant v.

Fix a > 0. The trasformation between the cartesian coordinates system (z,y) and the elliptic one
(p,v) is given by

{:c = acosh p cosv (1.11)

y = asinh psinv.

In order to give meaning to the variables (u,v), let’s look at the coordinated lines. From the
expression of the coordinates (1.11) we see that a correct linear combination of 2% and y? turns out
to be constant, and therefore represents a coordinate line. Indeed, if 1 = p* € [0, +00) is fixed, we
have that

2 y?

a?cosh? p* a2 sinh? p*

=cos’ v +sin’v = 1. (1.12)

xz=a cosh u* cos v

y=a sinh p* sin v
Consequently, the coordinate lines corresponding to constant x are ellipses. Similarly, we have that

562 y2

a?cos? v q2sin? v*

= cosh? i — sinh? i = 1 (1.13)

z=a cosh p cos v*

y=a sinh g sin v*
for v = v* € [0, 27) fixed. Hence the curves corresponding to constant v are hyperbolae. Therefore

the coordinates (, v) identify a point of R? by the intersection of an ellipse with a hyperbola. Figure
1.1 shows some coordinated lines.

From equations (1.12) and (1.13) we deduce the meaning of the parameter a > 0: it represents the
x-coordinate of the foci F. = (+a,0) of the coordinate lines.

For R > 0 we define

353(0){(:1:,y)€R2: v’ + v Rl}

a?cosh?’ R a2sinh?
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to be the ellipse with foci in (+a, 0) and intersection with the z-axis in (a cosh R, 0). We will call the
number R elliptical radius. The set €, is the boundary of the elliptic region

2 2

x Y
Er(0) = < (z,9) € R?: + <1}.
& (0) {( y) a2cosh’> R a?sinh? R

In elliptical coordinates, the region £z (0) is given by

Er(0) = {(u,v) € [0, R) x [0,2m)}.

1.2.2 Derivatives and Integrals in Elliptic Coordinates

We now present a useful formulary to carry out explicit calculations in elliptical coordinates. The
information on the coordinate system (1, £2) chosen to study a problem on R? is contained in scale
factors h,(&1,&2) and hy(&1,&2). For orthogonal coordinate systems, such as elliptical, scale factors
are the equal h, = h, = h. For the elliptic coordinate system we have

h(p,v) = ay/sinh? p + sin? v

as it can be deduced through differential geometry’s tools.

In subsequent chapters we will make a lot of use of the instruments of mathematical analysis in
systems with elliptical geometries. Therefore we give the expression of some of them.

Let us start with the gradient. Let u : R*> — R with u € C'(R?). The gradient of u in elliptical

coordinates is given by
1 ou Ou
VU(/JJ, V) - h(,u, V) ((9“7 8u) .

If u € C1(ER), the normal derivative of u in (R, v) € 08 is

Oou 1 Ou
%(R,V)—Vu(Rﬂ/yn— h(RW)a—M(R,u) v e [0,2m).

where 7 is the unit normal pointing out of £g.

We will also need to calculate some integrals in system with elliptic geometry. If u € L'(R?) its

integral over R? is given by
27 “+o00
/ udr = / / u(p, V)R (1, v) dpdv.
R o Jo

Note that if u € C1(R?) and Vu € L?(R?;R?) then

27 +oo
/R|Vu\2da::/ / |Vu(p, v)|?6%(u, v) dudy
2 o Jo

L) ()
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Moreover, in the elliptic coordinates system the Laplacian of u € C? is given by

1 Pu  0%u
AU(M, V) = 7}]]2(”, V) (6/12 + 8V2)

and the Laplace equation reads

u  0%u
Au(p,v) = o2 T e

1.3 Conformal maps

We now discuss how the elliptical coordinate system was deduced and how it is possible to relate it
to the polar coordinate system.

First we observe that the coordinate system (u, v) is orthogonal, as can be seen from the expression
of the line element
ds®> = a®(sinh? p + sin? v) (dp? + dv?).

The orthogonality of a coordinate system can also be interpreted in terms of the coordinate lines.
Consider the Cartesian coordinate system (x,y). For this system the coordinate lines are given by
the curves 7,, : t — (zo,t) and 7y, : 7 — (7,%0) for (zo,v0) € R? and ¢, 7 € R. These curves form
an infinite grid of orthogonal lines, meaning that at every point (z¢, yo) € R? where the two curves
intersect, the velocity vectors ¥, and +,, are orthogonal, i.e.

dSQ(ﬁ/wo’ 'Yyo) =0.

Consequently, the map (p, v) — (x,y) must preserve the orthogonality between the vectors tangent
to the coordinate curves. If we identify R? with C via (z,y) = x + iy = z, this property is exactly
expressed by conformal maps.

Definition 1.3.1. Let U,V C C. A function z : U — V is called conformal at a point ug € U if it
preserves angles between directed curves through .

A sufficient and necessary condition for a map to be conformal is the following [18].

Theorem 1.3.1. A function z : U C C — C is conformal if and only if it is holomorphic and z'(w) # 0 for
allwe U.

Using the properties expressed by the necessary and sufficient condition we can show that the
Laplace’s operator is separable in an orthogonal coordinate system. This is due to the fact that
the Laplace’s operator is separable when expressed in Cartesian coordinates, and theorem (1.3.1)
guarantees that all coordinate systems obtained from the Cartesian system through conformal maps
behave exactly like the latter. Indeed, let us consider a conformal map z : C — C, where we equip
the domain with coordinates w = &; + i€> and the codomain with coordinates z = z + iy. We

have
9 _1/0 .9 9 _1(9 90
0z 2\oz oy)’ 0z 2\ox oy



CHAPTER 1. PRELIMINARIES 15

SO

9 9 0 o (0 0
or 0z 0z oy 0z 0z)°
Then, the Laplacian is
0? 0? 0? _
Au(z,y) = (amg + W)U(x,y) = 4%7«6(%3)

Now z = z(w) and hence
o _dwo 0 _dwo
0z  dz ow’ 0z  dz 0w’
since the Laplacian in terms of the ({1, &2) coordinates is

dw
dz

2
92 dw
dwon (WP =4

2ro? 92
<8€f+8§§)u(€1’§2)7

then the Laplace’s equation takes the form

o? 0?
—_— —_— = O
<8£% + ag%)u(§1a§2) )
where we used that |[dw/dz|? # 0. This last property of conformal maps can be found in [18].

1.3.1 The elliptic and polar coordinates system via conformal maps

We seek now for conditions on the map z = z(w). Since the function z = z(w) is also conformal, it
satisfies the Cauchy-Riemann equations

Ox _ 9y

08 0&

o _ oy (149
06 &

Cauchy-Riemann equations ensure also that if 2’ # 0 then the scale factors

B oz \* or \? B 3y2 8y2
%—VQa)+Qm> and %—¢Qm>*(%ﬂ

are equal and never vanish

dz

The Jacobian of the trasformation w — z(w) is given by

Oxr Oz ) ) )
Cdet | % 08| (9% Or N = |
det(Jz) = det oy oy (851 ) + <8£2 hahy To

9 0&
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where we used (1.14). We now suppose that

2

d
ﬁ = f1(&) + f2(&2), (1.15)
which implies
9 |dz |
56,06, | dw =0. (1.16)

Since |dz/dw| is the scale factor of the trasformation, we have now an equation for the kind of scale
factor a coordinate system must have to be separable for Laplace equation under the assumption
(1.15). Now dz/dw is a function of w and dz/dw is a function of w so we have to rewrite the
differential operator in (1.16). We have

52 0 o2
96,106, ow? ' Ow?

Hence equation (1.16) is equivalent to
A\ P () (de\ & (ds
dw ) dw? \dw) \dw ) dw? \ dw

L@ 1
dz/dw dw? \ dw ) dz/dw dw? \ dw )’

Since the left hand side is a function depending only on w and the right hand side is a function of z,
they must equal the same constant A. Therefore equation (1.16) is then equivalent to the system

() =2 Ew

0% (dz , _ dz , _
g () = X )
The system of equations (1.17) must be solved for different value of A € R. In practice, it is sufficient

to solve it for A = 0, 1, since any different value is equivalent to a change of scale (or a change of
orientation) and it is not relevant for the behavior of the solution.

or

(1.17)

The case in which we set A = 0 gives the Cartesian coordinates. Indeed the solution for dz/dw is
B + ~vw, and if v = 0 we have
z=a+1if

where o, 8 € C. If &« = a + ib, 8 = ¢ + id we have
r=a+c§ — déy, yb + &2 + d&y

and the trasformation correspond to a rotation, change of scale and translation.

Set A = 11in (1.17). It is straightforward to check that

z(w) = ae” + be™" (1.18)
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is a solution of (1.17) for a,b € R. Letting a = 1,b = 0 we find

2z =W =Stz — ligite
that is the polar coordinates

hy = hy = €.

{x = €% cos(&y)

y = e sin(&),

Suppose now b # 0. If in (1.18) we set
{a e o (1.19)

with d = e* = V4ab, e’ = \/b/a and d, o, B € R, we obtain
Liew—o 1 Lge—w-n)
z= §d€ + §de = dcosh(w — f).

Since w = &; + i€y, from the definition of the hyperbolic cosine and Euler’s formula we find

z=dcosh(§ + i€ — ) = d(cosh(& — ) cos(&2) + isinh(&, — ) sin(§2)>.

Comparing the latter equation with z = = + iy we find the coordinate

{m = dcosh(&; — f3) cos(&2) (1.20)

y = dsinh(& — ) sin(&2).
Moreover the scale factor is

dz

dw

=hy =hy = d\/sinh2(§1 — B) +sin?(&).

The coordinate system given by equations (1.20) is the elliptic coordinates system. Curves with

constant & describe confocal ellipses with foci in (+d,0) and intersection with the z-axis in
(dcosh(R),0).

Notice that if we set « = 8 + In 2 in (1.19) we find

a= %eo‘_ﬁ =
b= Lerth =e2f
d=e* =28

and by taking the limit 8 — —oco we find that d — 0. In this limit the elliptic foci merge together
into the origin: the elliptic coordinate system changes in to polar coordinates system.
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In particular, it is possible to map the ellipse with foci in (+d, 0) and intersection with the z-axis in
(dcosh(R),0) given by

2 2

ER(0) = (z,y) e RZ : — %X 4 Y :1} 121
#(0) {(:r 2 d2cosh?’ R d2?sinh® R ( )

in the open ball 9B,.(0) = {(z,y) € R? : 2% + y? = r?}. To determine the radius r we operate the
substitution

d— d=2eP
R—R=R-p

in (1.21). By letting 3 — —oo we find that

r= el (1.22)



Chapter 2

Cloaking by transformation optics

In this Chapter we introduce cloaking by transformation optics. We follow the ideas presented by
Khon et al. in [19]. In Section 2.1 we introduce electrical impedance tomography, a technique used
to obtain information on the inside of a body by measurements on its boundary. We then introduce
cloaking based on the change of variables in circular geometry. In Section 2.2 we present a technical
analysis of near-cloaking in circular geometry, and the main results are Theorem 2.2.2 and Theorem
2.2.3. Finally in Section 2.3 we study the problem in elliptic geometry and show that cloaking by
transformation optics does not occur for generic sources, Theorem 2.3.1, while for high frequency
sources cloaking can still occur, Theorem 2.3.2.

2.1 The main ideas

In this section we introduce some basic concepts and some definitions to make more precise what
is meant by cloaking by transformation optic.

2.1.1 Electric impedance tomography

The main purpose of electrical impedance tomography is to obtain information on the interior
of an object by using only the information that is available at its boundary. Electrical impedance
tomography is currently used in medical screening techniques to infer the composition of body
tissues.

In this procedure, electrodes are attached to the skin of the examined region. Electrostatic stimuli
are transmitted from the electrodes to the skin tissue, and the electrostatic response is recorded
through other electrodes. This process is then repeated for several initial stimuli. Physically, the
electrodes apply a small current to the boundary, which for the laws of electrostatics, results in
the application of a known elettrostatic potential to the boundary. The presence of this potential
determines the potential within the examined region. Since each tissue has a different conductivity,
by determining the current generated at the boundary we can try to determine the composition of
the studied area. This idea is attributed to Webster and first appeared in [16].

19
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Mathematically speaking, the problem of recovering conductivity from surface measurements of
current and potential is a non-linear inverse problem and is severely ill-posed. It is precisely this
ill-position of the problem that allows the phenomenon of cloaking [13]. This problem was posed
and partiality addressed by Calderon in [7].

Let us now formulate the problem. Let 2 C R”, n > 2, with 9Q € C 1 be the region we want to
study. Suppose (2 is filled with a material with unknown electrical conductivity . Mathematically,
o is a non-negative symmetric matrix-valued function defined on 2. The equation describing the
electrostatic potential v : 2 — R is the PDE

"0 Ou .
V- (oVu) = 1;1 oz, (crz] (x)axj> =0 in Q, (2.1)
with the Dirichlet data v = f on 0f). Equation (2.1) relates the electric field Vu, or rather the
voltage u, to the current o Vu. For what has been said, electrical impedance tomography studies
the Dirichlet-to-Neumann map A, associated with problem (2.1), seeking information about o.
The Dirichlet-to-Neumann map is the map which, given a voltage at the boundary, returns the
corresponding current at the boundary

As: u|aQ—> (cVu) 'ﬁ"(f)g

where 7 is the outward unit normal to 0f).

In this context, a subset D C 2 is cloaked if its contents, as well as its existence, are invisible to
electrostatic measurements performed on the boundary 92. However, this definition needs to be
refined, since we have no way of translating the above sentence into mathematical terms.

Definition 2.1.1. Let D C Q be a fixed domain and let o, :  \ D be a non-negative, matrix valued
conductivity. We will say that o, cloaks the region D if any extension of it on D

 [A(x) forzeD,
748 =9 (2) forz e\ D

produces the same measurements at the boundary of a conductivity ¢ = 1 defined in all {2,
regardless the choice of Ain D.

Note that this definition captures an important feature: if we place our structure €2 inside another
object we would like the conductivity of definition (2.1.1) to still cloak D. Indeed, suppose o, cloaks
D C Q, and let €’ be any domain containing the structure 2. Then the Dirichlet-to-Nemann map
associated with the conductivity

A(z) forxze D,
o(x) =4 o.(x) forzeQ\D,
1 forz e U\ Q

is independent of A(x), and it is identical to that of a conductivity o = 1 defined on all £'.



CHAPTER 2. CLOAKING BY TRANSFORMATION OPTICS 21

2.1.2 Invariance by change of variables

Equation (2.1) has an interesting symmetry. Actually, the map A, allows us to determine o at its
best at less than a change of variables. This observation is pointed in [21] with an attribution to
Tartar.

With ideas similar to those that led to Theorem 1.1.3, we can prove that there is a unique solution of
(2.1) with Dirichlet data v = f at 9. Indeed, if o is bounded, symmetric, positive definite (and
therefore the corresponding operator L is elliptic), and f € H'(f2), the solution of (2.1) is unique
and can be obtained by minimizing the energy functional in the appropriate Sobolev space H'(Q)

E(u) = /()(Vu,aVu) dz (2.2)

with the constraint u — f € H{ () to take account of the boundary condition u = f at 9.

Proposition 2.1.1. In the above setup, the knowledge of A, determines the minimum energy (and hence the
solution w). Furthermore, the knowledge of the minimum for all Dirichlet data determines the boundary map
Ao

Proof. Let v be the minimum of the energy (2.2). Since f = u at 992 we have
fA(f)do(z) :/ u(oVu,n) do(z)
aQ a0
= / (V, (uoVu)) dx
Q
= / ((Vu,oVu) + (uV, (cVu))) dz
Q
= / (Vu,oVu) de = E(u)
Q
where we used (2.1). The converse follows from the polarization identity: for all f, g
[ ha@do= [ F+or (oo [ (F-g)A(f - g)d
a0 a0 a0
O

Let us now discuss the change of variables. Let F' : {2 — Q be an invertible map which preserves
orientation. Set y = F(x). The energy functional becomes then

_ [N Quu [N~ Ou Oy Oudy (On
Eu) = /Q”zz:l 7ij Ox; Oxj du = /Q , Z dyy, Ox; Oy Oz ; det(ay) dy.

i,7,k,l=1

We can rewrite this more compactly as

/ (0(2)Vu(z), Vu(x)) dz = / (Foo(y))Vauly), Va(y)) dy
Q

Q
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where
1

~ det(DF)(2)

is the push-forward of o by the change of variables F'. DF' is the matrix with (¢, j) element dy; /0z;
and the right hand side is evaluated at z = F~1(y).

Fo(y) DF(z)o(x)(DF ()"

Proposition 2.1.2. In the above setup, let F be such that F'(x) = x at OS2. Then the boundary measurements
associated with o and F, o are identical, i.e.

Ao(f) =Ap.o(f)  forall f.

Proof. Since F'(z) = x at 012, the change of variables does not affect the Dirichlet data f. But then
for any f we have

[ ir(pdo@) = min [ 0@V, V() do

= uzr?;{lag/Q((F*U(w)vy“(y)avyu(y» dy

fAr.o(f)do(y).
[219]

The thesis then follows from the Proposition 2.1.1. O

2.1.3 Cloaking via change of variables

The result expressed in the proposition opens the door to the near-cloak phenomenon. Cloaking in
systems with circular symmetries has been extensively studied. See [11]. We briefly illustrate the
idea in the case of circular geometry. For simplicity, let @ = B5(0) C R? and D = B;(0) the region
to be cloaked. The case with generic radii is analogous. Fix p > 0 and consider the diffeomorphism

F(z) ; for |z < o 23)
X)) = .
(2212; + %)ﬁ for p < |z| < 2.

The diffeomorphism F has the following properties. First of all, I is a continuous and piecewise
smooth map. Then F' maps B,(0) in B:(0), while mapping B> (0) into itself. Finally F'(x) = z at the

boundary 0B (0).
F
O _
B,(0)
‘ B, (0)
B, (0) (0)

B> (0

Figure 2.1: The map F expands B,(0) to B;(0).
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F'is an acceptable candidate for Proposition 2.1.2. Suppose now that the conductivity of the system
is given by

o) = A(y) for y € B1(0),
oaly) = F.1 fory € By(0) \ B1(0),

for some arbitrary conductivity A(y). By Proposition 2.1.2, the measurements at the boundary of
this system are the same as those of a system with conductivity

_ (F~1.A)(z) for z € B,(0),
(F)uo)(x) = 10

1 for x € B5(0) \ B,(0).
In other words, the boundary data associated with the system with the inclusion B (0), the interior
of which can be filled with any material, are the same as for a ball perturbed by a small inclusion
B,(0). The content of B;(0) is cloaked, but its presence is known. The system is near-cloaked.

2.2 Near-cloak

Our goal is now is to show that when p is small enough, the system described above is sufficient to
cloak the unit disk. This result is contained in Theorem 2.2.3. To prove this result, we first construct
the Dirichlet to Neumann map in Section 2.2.1. Then in Section 2.2.2 we study two systems with
dielectric inclusions and show how these are close to a system with uniform conductivity when the
radius of the inclusions is small (see Theorem 2.2.2).

2.2.1 The Dirichlet to Neumann map
We introduce a functional setting for the Dirichlet-to-Neumann map.

Let Q C R" be a bounded open domain with 92 € C*. Suppose that the conductivity is positive
and uniformly bounded, in the sense that there exists two constants M, m > 0 such that

mlg® < (o(2)€,€) < MIEJ? (24)
forallz € Qand ¢ € R™.

Consider again the PDE (2.1) with Dirichlet data f. In Section 1.1.2 we said that the solution must
be found in the Sobolev space H'! (). We noticed that in order for the condition v = f on 9 to be
fulfilled, it is necessary to request u — f € Hj. However, this second condition is not convenient for
the definition of the Dirichlet to Neumann map, since it forces us to work with the entire 2 domain,
while we want to use only the boundary 9. Indeed, we can reformulate the condition v — f € H{
in equivalent terms using the trace operator, and get a more comfortable space on which to define
A.. The trace operator ¢r allows us to assign values to functions in Sobolev spaces, as expressed by
the following Theorem [10].

Theorem 2.2.1. Let 2 C R™ be open with O € C*. Then there exists a linear and continuous operator
tr: HY(Q) — L?(09) such that

1. tr(u) = uloq ifu € HY(Q) N CO(Q);

2. there exists a constant C' > 0 such that ||tr(u)|\L2(aQ) < C’||u||H1(Q).
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Through the trace operator we can define the fractional Sobolev space
HY2(0Q) = {f € L*(0Q) : Juec H'(Q) : tr(u) = f}.

An element f € H'/?(99) is a function with one-half derivative in L?(052), see []. The space H'/2(99)
is already a good space on which to define A,. Note that however, if f is constant, then the solution
is also constant and A, is trivial, which would imply that the kernel of A, contains all the constants.
It is therefore appropriate to define the Dirichlet to Neumann map on

HY2(00) = HY2(00) 1 {/m f= o}

On this new space we set the norm

2 i 2
_ d
||f||Hi/2(OQ) v=5’n(}rr1189/ﬂ Vel d

The Dirichlet to Neumann map is then the operator
Ao+ H?(00) —  HY?(09)
’u,|g)Q — (O’VU) .ﬁ|89

where H, / *(89) is the dual space of H Y ?(89). We note that A, is a bounded and linear operator.
Furthermore, since o is symmetric and satisfies (2.4), A, turns out to be symmetric in the L?-inner
product, positive definite and invertible. Hence A, defines a positive definite quadratic form on

H? (0R2), whose action can be written explicitly as

(Ao f1, f2) = /89 Ao (f1)fado(z) = /g)(aVul,Vug dx,

where u;, us solve the equation (2.1) with Dirichlet data f1, fo. The natural norm for measuring A,
is therefore

”AU” = Sup{|<Aof7 f>|7 ||fHHi/2(aQ) < 1}
Proposition 2.2.1. Suppose that o and n are two ordered conductivities, i.e.

{o(@)€,€) < ()&, )
forallx € Qand & € R™. Then A, < A, in the sense that

<A0(f)af> S <A7](.f)af>
forall f € Hi/Q(Q).

Proof. We use the variational principle with energy (2.2). Indeed if u, v are such that V - (¢Vu) = 0
and V - (nVv) = 0in Q with u = v = f on 902, then

(A(f), f) = / (oY, Vu) da

Q

S/(UVU,VU) dz
Q

g/ﬂ(nVu,Vu}dx:<An(f)»f>-
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2.2.2 Dielectric inclusions

Let Q@ = Br(0) and D = B,(0) with 0 < p < R. Let us consider the conductivity

(z) = a forzx e B,o(o)’
Oa,p )1 forze Br(0) \ B,(0).

As it follows from Proposition 2.2.1, the effects of the inclusion B,(0) depend monotonically on the
value of the conductivity «. It is therefore natural to study the limits @ — 0 and o — 400, which
respectively correspond to the case of perfect insulator and perfect conductor.

Let us therefore consider the differential problems

Auf =0 in Bg(0)\ B,(0),
uf =f ondBg(0), (2.5)
%—7? = on 0B,(0),

and

Auf, =0 in Bg(0)\ B,(0),
ufo=f  ondBg(0), (2.6)

ul, = cs 0N 9dB,(0),
where the constant ¢, € R is uniquely determined by the condition

p
/ Ous, do(x) = 0.
o

B,(0) On

Physically, we expect the uf, solution to converge to uf, and v2, in the limits @« — 0 and o — +o0.
This is indeed true, as shown by the following result.

Proposition 2.2.2. [n the above setting, we have u?, — uf, when o — 0 and uf, — uf, when o — +o0

weakly in H'(Bg(0) \ B,(0)).

Proof. For any o > 0, let u”, be the only solution of

Auf =0 in Br(0)\ B,(0),

ug, = f on 0Bg(0), 2.7)

Auf, =0 in B,(0), ’
ou?, ou?,

age| =], ondB,(0).

Case a — 0. First, we notice that the energy of the solution v, is uniformly bounded in ¢, i.e. there
exists a constant C' > 0 such that

VUil 2 pronzrmy <€ Yo >0.
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Moreover, v, is uniformly bound in « in the L?-norm

el 2 ron By <€ V>0

This follows from the fact that u#, is bounded on a bounded set. The boundedness of u%, follows
from the maximum principle. Let M = maxyp, () f and suppose that the maximum of u, is
assumed in the interior, i.e. maxp, o) uf, > M. Let ¢ = (uf, — M)*. Clearly ¢ € Hj(Bgr(0)), so the
weak formulation states that

0= / UVug~V<pdx:/ o|Vul|? dx
Br(0) {u=M}

that is, the measure of the set {u?, > M} is zero, thatis, u?, < M for all o > 0. Similarly, it is proved
that uf, > m, where m = mingg,, (o) f-

We have then

el (5 on By <€ Vo> 0.

Then, by Banach-Alaoglu Theorem the solution uf, converges weakly to uf, in H*(Bg(0) \ B,(0))
when a — 0 up to a subsequence. Also, from the third equation in (2.7) we have ||aVu?,|| ;- (B,(0) <

C for any a > 0, and analogously to above we have auf, — 0 weakly in H!(B,(0)) when a — 0.

Regarding the conditions at the boundary, we have clearly that u, = f on dBr(0). About the
condition on 0B,(0), we can take the weak limit in

ou?, ou?,
Ta| _ e
on |, on |_
and get that
%—O for z € 9B,(0)
on P

Case o — 400. Again uf, — u?, weakly in H*(Bg(0) \ B,(0)). From the second equation of (2.7) we
have that |[Vuf[| 2 B,(0)) — 0 when @ — +00, since the energy of the solution must be bounded.
The boundary condition on 0Br(0) is clearly satisfied. Moreover, on 9B,(0) we have

/ Oug,
oB,(0) On

so by taking the weak limit we have

ouf,

= af
+ /aBpm) on |

The presence of the inclusion B,(0) can be studied in the limit p — 0.
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Theorem 2.2.2. In the above setting, let Ay be the Dirichlet-to-Neumann map when o = 1, and let A5, A%,
be the Dirichlet-to-Neumann maps associated with the problems (2.5) and (2.6) respectively. Then there
exists some constant C' > 0 such that

1Ay = AGl < Cp*  and ||y = AL | < Cp%.

Without going into too much details, the proof is based on the method of separation of variables.
Indeed, once we find the solutions u1, uf, and u,, the normal derivatives at boundary Br(0) are
computed and compared in the L?(9Bg(0))-norm. Using Parseval’s identity and a simple estimate
we obtain the thesis.

2.2.3 The regular near-cloak is almost invisible
Let us once again consider the near-cloak of Section 2.1. Suppose that @ = B»(0) with conductivity

) = A(y)  fory € B1(0),
7aY) = F.1(y) fory e By(0)\ B1(0),

where F is given by (2.3). We assume that the conductivity A(z) of the region being cloaked is
positive definite and finite, that is

mlgl® < (A(y)€,€) < MIg*  fory € Bi(0),
so that the solution of the PDE is unique.
The Dirichlet to Neumann map of 04 is the same as that of a system with conductivity

(FY),A)(z) forz e B,(0),

(FYsoa)(z) = {1 for 2 € By(0) \ B,(0).

The following Theorem holds.

Theorem 2.2.3. Suppose that the shell B3(0) \ B1(0) has conductivity F,1. If p is small enough, then
B1(0) is nearly cloaked, i.e. there exists some constant C' > 0 such that

Aoy = Aull < Cp?.

Proof. We use the monotonicity property given in Proposition 2.2.1 and the convergence relation of
Proposition 2.2.2. We have

lim A, = AJ <Ay, = Apory.gy < A% = lim A, .

a—0 ’ a—00

Hence
Aj— AL <A,y — A <A — Ay

The previous estimate, coupled with Theorem 2.2.2, gives the thesis. O
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2.3 Results on transformation cloaking in elliptic geometry

We now present the results in elliptical geometry. We start by reformulating problems (2.5)
and (2.6) in elliptic geometry. Let Q@ = £r(0) and let D = £,(0) with p € (0, R). We consider

conductivity
_Ja forxze &,(0),
Tap(@) = {1 for = € Ex(0) \ £,(0).

Since Proposition 2.2.1 has been proved for general domains, we study equation (2.1) with o = o, ,
and Dirichlet data u = f on 9€x(0) with f € H'(Er(0)) in the limits @ — 0 and @ — +oc in the
elliptic case. Therefore we have the problems

Auf =0 in&g(0)\ E,(0),
ug=f ondEg(0), (2.8)
%—ﬁ = on 9&,(0),

and

Auf, =0 in&r(0)\ £,(0),
uf, = on &R (0), (2.9)
uby = 0n 0E,(0)

where the constant ¢, € R is uniquely determined from the condition

ou”,
X do(z) = 0.
/8&(0) o 1)

Since Proposition 2.2.2 is still valid, we only need to prove Theorem 2.2.2 in the elliptic case.
Unfortunately there is no analogue of Theorem 2.2.2 in elliptic geometry, although elliptic and
circular geometry are very similar. Indeed, the following Theorem holds.

Theorem 2.3.1. In the above setting, let Ay be the Dirichlet-to-Neumann map when o = 1, and let Afj, A2,
be the Dirichlet-to-Neumann maps associated with the problems (2.8) and (2.9) respectively. Assume that
[ =" kez fue™ with fi, = 0 for all |k| < ko, and fy, # 0. Then there exists C > 0 depending only on R
such that

|As = AGll > Cholfigle®  and || — AZ[| = Cholfiy |00, (2.10)

Proof. We present our argument in three step. In the first one we construct the solution u, to the
problem Au; = 0 in Eg(0) with Dirichlet data u = f on 0Eg(0); and we find the Dirichlet-to-
Neumann map. In the second one we construct the solution uf, of (2.8) and we prove the first
estimate in (2.10). Finally, the third step is analogous to the second one: we construct the solution
uf, of (2.9) and we prove the second estimate in (2.10).

Step 1. Since we are looking for solution u € H'(Er(0)) we use the method of separation of
variables we have seen in Section 1.1. The most general solution is

ur(p,v) = Z(ake‘klu + bke_lk‘“)eik”
keZ
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with {ax, bx }rez C 1?(C) to be determined. First observe that b, = 0 for all k& € Z, because the
solution u must be regular in £z(0) and the change between elliptic coordinates to Cartesian
coordinates does not produce a map that is regular in a neighborhood of the foci (+a,0). We now
determine {ay }xez. Since f € H(2), we can write for all v € [0, 27)

_ Z fkeiku
kEZ

where

1 2 —ikv
— fw)e dv.
27T 0

is the k-th term of the Fourier series of the source f. The boundary condition u(R,v) = f(v) for all
v € [0,27) implies ay, = fre*I¥ for all k € Z. The solution is then

— kae\k\(u—l%)eikv.

fe=

kEZ
The Dirichlet-to-Neumann map is then
ou 8u
Ai(f) = 877‘11(}2’”) ——( Z|k|fk:€

keZ

Step 2. We now determine the unique solution u{j of (2.8). Similarly to the above, we write the
problem in elliptical coordinates and determine the solution by separating the variables. A direct
calculation shows that the solution is

uf(p,v) = Z L (e‘km + eQ‘k‘pe_lk“‘)eik”. (2.11)
k

p e|k‘R —+ 62|k‘96_|k|R

The current produced on the boundary 0€z(0) of the problem (2.8) is therefore

auo 1 — e2lkl(p—R) Jikv
AS() = ) =Dkl —mom e

keZ

We can now estimate the difference between the boundary Neumann data for the problem of an
ellipse with uniform conductivity ¢ = 1 and problem (2.5). We have

P12 27 P 2
G _ - [ 52 @n - G wn| w
on on ||z o | on on
L2(0€r(0)) (2.12)
o .o elFI(-R) ’
=21 ) 4k fi T ARG}

keZ

where the last line follows from Parseval’s identity. Recall now that f, # 0 with ko > 0. Since f is
real we have f_i, = fx,, hence

Ak (p—R) oAk (p—R)

> o FY Y n— T A | ——
L2(9€r(0)) kzziko (L e?lklle= )2 T (Lt el

p 2
Ou;  Ouy

on  0On
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Taking the square root of each expression above and using the fact that p < R lead to the bound

Step 3. A direct calculation shows that the solution to problem (2.9) is exactly (2.11). Therefore the
proof is analogous as above. O

er)o(pr) 62](7()/)

Ju;  Ouf 2
Z4ﬁk0‘fko|mz4ﬁk0|fko|w ZCkO‘fko|ep'

on on

L?(9€r(0))

The previous Theorem states that cloaking by transformation optic does not happen in systems
with elliptical geometry. Indeed if p — 0, the difference between Dirichlet-to-Neumann maps is
non-zero, and therefore an external observer is able to distinguish the two systems. Considering the
topic from a qualitative stand point, we can understand the reason for this conclusion. Indeed, in
the limit p — 0, the ellipse £, does not collapse to a point, i.e. the origin, but in the segment [—a, a],
where o > 0 is the focus of the ellipses, and as a matter of fact, we are removing a much heavier
set in terms of the problems (2.8) and (2.9) than in the circular case in which we are removing a
point.

This fact can be formulated in mathematical terms using the 1-dimensional Hausdorff measure.
Indeed, in the limit p — 0 we have that #'(€,) # 0, although H'(B,) = 0. Therefore, in the study
of problems (2.8)-(2.9) and (2.5)-(2.6) we are significantly changing the domain, to such an extent
that cloaking for transformation optics does not happen.

On the other hand, the proof of the previous Theorem can be adapted to prove the following
result.

Theorem 2.3.2. In the above setting, let ufj, u?, be the solution to problems (2.8) and (2.9) respectively.
Suppose the source f : Er(0) — R, f € CY(), is high-frequency monochromatic, that is, there is a large
ko € N such that f = f,e V. Then there exists some constant C' > 0 such that

‘ duy aug C ‘ Ouy  Ouf, C
—— = S < — and —— = <.
on 0N || 29,00y Ko on O || p20en0) ~ Ko
Proof. Starting from equation (2.12), we estimate
ekl (p—R) c C
5 eohi-my =1 and Ifkolék—égk—o.

O

Theorem 2.3.2 states that cloaking for transformation optics is still possible in elliptic geometries.
Indeed, if we study a domain 2 = £z (0) through measurements on the boundary 9€z(0) using only
high frequency monochromatic electrodes, with frequency kg, then we are not able to distinguish
the inside of €2 from an system (2 with an inclusion D = £,(0), with p < R. Then, using a blow up
map F as in (2.3), we can expand the ellipse £,(0) into an ellipse £,(0), with » > p, and hide objects
inside it.



Chapter 3

Cloaking by anomalous localized
resonance

In this Chapter we analyze the cloaking due to anomalous localized resonance (ALR). Many aspects
of cloaking by ALR are known in circular geometry: in Section 3.1 we formulate the problem in
this geometry. Then in Section 3.2 we present the ALR phenomenon in detail and discuss how it
is related to cloaking. Next we make an overview of two different techniques used to prove that
ALR occurs: spectral theory and variational principles. Focusing on the second, we show how
the problem can be reformulated in terms of two dual variational principles. This is the content
of Section 3.3. Finally, in Section 3.4 we build some suitable test functions to be used in these two
principles and we present our main results in elliptical geometry.

3.1 The problem

Let us start with the formulation of the problem. We consider an infinite cylindrical structure
with axis directed along the z-axis. Suppose that the section of this cylinder is given by the disk
Br(0) C R? for some radius R > 1. Inside this cylinder we consider a cylinder with the same
axis and section ¥ C B;(0). We then assume the presence of an electric source that surrounds the
structure.

Suppose the electrical permittivity in the core ¥ and in the shell Br(0) \ X are +1 and —1, respectively.
Since the region outside of the cylinder, called the matrix R?\ Br(0), is supposed to be homogeneous,
we assume that the permeability is +1. We assume that the cylinder and the environment are lossy,
with losses controlled by the loss parameter > 0.

Our goal is to determine the electrostatic potential for this system. Since the system has translational
symmetry along the z-axis, we restrict the problem to the plane R?. The problem that determines
the electrostatic potential u,, : R? — C is the elliptic problem

{v (aygVuy) = f in R?

(3.1)
Uy = 0 as |z| — +o0.

31
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We notice that, by writing u,, = v, + i/nw,,, the above equation can be seen as a system of two
elliptic PDEs

V- (AVv,) — Aw, = f  inR?

V- (AVw,) +n*Av, =0 inR?

vy, =0 as |z| — +oo,

wy, =0 as |z| — +oo.

The boundary condition in (3.1) is necessary: every real electric field must vanish at distances far
from the structure. In accordance with our assumptions, the electric permittivity a,, is a piecewise
constant and complex-valued function

ay (@) = Alx) + i, (3.2)
where the real part A(z) has a core-shell-matrix character

+1 inthe core X
A(x) =< —1 intheshell Bg(0)\ X (3.3)
+1 outside Bg(0).

and 1 > 0 is the loss parameter.

The negative sign of the dielectric permeability in the shell is typical of plasmonic materials.
Plasmonic metamaterials were first theorized by Veselago [26]. Without going in to details, they
are characterized by a surprising property: energy is transported in a direction opposite to that
of propagating wavefronts, rather than paralleling them, as is the case in positive index materials
[25,4].

The source f represent the source of the electric field. To give physical and mathematical meaning
to the equation in problem (3.1) we have to make assumptions on the nature of f. Physically, we
assume that the source represents a charged wire with non-uniform charge density placed outside
the plasmon structure, see Figure 3.1.

Mathematically, these physical demands lead to a class of sources f with precise assumptions. First
of all, we assume that f is real-valued, since all charge densities are real-valued. Secondly, we
assume that it is supported at a distance ¢ > R from the origin. Since f represent a one dimensional
source and the equation of problem (3.1) must be understood in an appropriate Sobolev space, it
is necessary to interpret f not as a function but as a distribution. Moreover, since f is supported
on 0B,(0), that is, on a set which is of Lebesgue measure zero, we cannot define f by integration
with respect to the 2-dimensional Lebesgue measure dz. To solve this issue we interpret f as a
distribution defined by integration with respect to the Hausdorff measure H! supported at 9B,(0).
In this way we can write the source as f = FH!'|0B,(0), where F : 0B,(0) — R is a L?(0B,(0))
function.

We require also that the source f has zero mean

/ FdH' =o. (3.4)
9B4/(0)
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Figure 3.1: A section of the 2d coaxial cylinder structure. The source f is supported in some
circumference 0B,(0).

This assumption is a compatibility condition and is due to the structure of the differential equation
of problem (3.1). Indeed, by integrating the equation on R? and thanks to the behavior of the
solution at infinity, from the divergence theorem we find the equation (3.4).

To sum up, we assume that

f=FH'"0B,0), F:0B,00)—=R, Fe&lL*0B,0), and / FdH'=0. (35)
9B, (0)

Definition 3.1.1. The plasmonic structure is defined by the coefficient a,, and (3.3). The configuration
of the system is the set of hypotheses on the plasmonic structure (3.3) and the source (3.5).

Considering that the equation of problem (3.1) is in divergence form, it is natural to investigate the
properties of the configuration by using energy methods. The energy associated with the problem
(3.1) is the functional &, : X — R given by

£, = g/R V|2 da, (3.6)

where X is an appropriate Sobolev space. Physically, the energy functional is proportional to the
energy produced by the source f and dissipated into heat by Joule’s effect. Indeed, if we call E,
the electric field generated by the source f and D, = a, D, the electric displacement field, we
have

&y~ Im/ D, -E,dr=Im | (A(z)+in)Vu,- Vu,dr = 77/ |V, |? d.
R2 R?

R2
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We will use the energy functional &, to establish the connection to cloaking.

Definition 3.1.2. Let a configuration be given by coefficients A and source f as in (3.3)—(3.5). We
call the configuration resonant if
limsup &, = oo.
n—0

Otherwise we call the configuration non-resonant.

3.2 Cloaking by anomalous localized resonance

In this section we establish the connection between cloaking and the behavior of the energy
functional &, as ) — 0.

When the loss parameter 1 goes to zero, the system of PDE (3.1) loses its ellipticity. In this limit,
the plasmonic structure exhibits a striking feature: the magnitude of the electric field diverges in a
specific area, called the anomalous resonance region, but converges to a smooth field outside that
region. Surprisingly, the anomalous resonance region has sharp boundary which is not defined
by any discontinuity of the electrical conductivity a,. This behavior is called anomalous localized
resonance (ALR). The ALR was first presented numerically in [6].

The connection with cloaking is then clear. Suppose that the source f, which by the hypotheses (3.5)
can be assumed to be a dipole, is placed within a critical distance of the plasmonic structure such
that ALR occurs. Since &, is the rate at which the energy produced by the source f is dissipated into
heat, the total power absorbed by the plasmonic structure becomes infinite when the loss parameter
goes to zero.

Physically, the source interacts with the resonant field that is generated by the source itself. The
resonant field creates a sort of electromagnetic molasses against which the source has to do a huge
amount of work to maintain its amplitude; which in the limit » — 0 becomes infinite. This situation
in unphysical.

The energy (3.6) is related with the electric field generated by the dipole source, which is proportional
to the dipole moment of f. Therefore, any realistic dipole source f within the anomalous resonance
region must have dipole moment which vanishes as 7 — 0. Accordingly, it makes sense to consider
a normalized dipole source «,, f, where o, — 0 as 7 — 0. Then, the physical electric field o, u,,
tends to zero outside the region where ALR occurs: the source f becomes cloaked. In this case we
say that cloaking by anomalous localized resonance (CALR) occurs.

Definition 3.2.1. We say that anomalous localized resonance (ALR) occurs if

1. the energy diverges
lim &, = 4o0. (3.7)
n—0

2. the solution u,, remains bounded outside some ball with radius a
lun(z)] < C, when |z| > a. (3.8)

for some constant C' > 0.
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We say that weak ALR takes place if

limsup &, = +o0. (3.9)
n—0

in addition to (3.8).

Conditions (3.7) and (3.8) are sufficient to guarantee CALR. If instead only weak ALR occurs, then
the source f will be invisible for an infinite sequence of parameters 1 which tend to zero, but it will
be clearly visible for all the other parameters for which weak ALR does not occur.

3.2.1 CALR by spectral theory

There are different techniques to provide a necessary and sufficient condition on the source term
under which CALR and weak CALR takes place.

In [2] Ammari et al. studied a problem similar to (3.1)-(3.2)-(3.3)-(3.5). Let 2 C R? be a bounded
domain, and let > be a domain whose closure is contained in 2. Suppose also that 052, 0% are
smooth. Consider the electric conductivity a, given by

+1 in X
ap=4—1+inp nQ\X
+1 inR%\ Q.

Let f be a complactly supported source with zero average
fdx =0
R2

and consider the PDE problem

V- (a,Vu,)=f inR?
[Vu,| —0 as |z| — +o0,

with energy

& :/ | Vuy, [ da.
T

By using layer potentials and symmetrization techniques, Ammari et al. were able to give a
necessary and sufficient condition on the fixed source term f for electromagnetic power dissipation
&, to blow up as the loss parameter of the plasmonic material goes to zero. Indeed, they gave this
condition in terms of the Newtonian potential of the source term, i.e. the convolution between f and
the fundamental solution I" to Laplace’s equation. See [23] for references on potential theory.

Studying the case ¥ = B,.(0), Q@ = Br(0), they were also able to provide an explicit condition to
the location of the source for cloaking to occur. In particular, for any source supported outside the

ball with critical radius
R\ 3/
R* = r<> (3.10)

r
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CALR does not take place. Conversely, for sources located inside the critical radius which satisfy
certain conditions, CALR does take place as the loss parameter goes to zero.

The main problem of this the approach is that one needs detailed information on the spectrum of
certain boundary integral operators, which depend on the geometry of the problem. It is not easy
in general to determine this information, and consequently their approach is not easily usable to
obtain explicit results in geometries different from the circular one.

In the case of elliptic geometries, some results can be found in [9]. In particular, Chung et al. have
shown that the configuration is resonant only if the source is supported inside the ellipse with
critical radius

R — (3R—r)/2 for R < 3r,
2(R—r) for R > 3r.

where r and R are the elliptic radii of the core and the shell respectively. To obtain quantitative
results in elliptic geometry we will use a different approach based on variational principles. This
approach was first introduced in [20] by Khon et al and it is explained in the next section.

3.3 Cloaking via variational methods

The variational approach introduced by Kohn et al. is based on some ideas presented in [8] for
a complex conductivity problem. In [8] Cherkaev et al. wrote a system of two complex PDEs of
the first order in terms of four potentials, deriving some variational principles of minimax and
minima for the latter. Minimax problems are written in terms of the potentials that are most useful
for controlling the energy of the system. Unfortunately, however, the minimax nature of these
problems does not allow to control the energies involved, since they do not provide any upper or
lower bounds.

However, the authors noted that, through the Legendre transform, it is possible to pass from the
minimax problems to the principles of minima. This is a great advantage: we can control the
bounds of the energies. However, the principles of minimum are written in terms of potentials that
are not easily controlled.

In any case, following the ideas of Khon et al. we rewrite the original problem (3.1) to obtain a pair
of dual variational principles.

3.3.1 The primal variational principle

First of all we rewrite the problem (3.1) in terms of two real potentials. Hence let v,, w, : R — R
and set )
i
Uy = Uy + Hwn.

A direct calculation shows that the complex equation (3.1) is equivalent to a system of two coupled

real PDEs. Indeed we have
V- (AVv,) — Aw, = f,

, (3.11)
V- (AVwy) +n°Av, = 0,
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on R2. Moreover, the energy of the system (3.6) is written as
_n 2 1 2
En(uy) == [ |Vog|*de+ — [ |Vwy,|*dz. (3.12)
2 R2 27] R2

Using the system (3.11) and the energy expression (3.12) we can state two dual variational principles.
First of all we build an appropriate functional analytic framework. Let

HY(R?) = {u e L2.(R?) :Vue LQ(RQ;RQ)}

equipped with the norm

||u||21(R2)=/ |Vu|2dx+/ 2 dz
R2 B1(0)

2 2
= ||Vu||L2(R2) + ||U’HL2(31(0))'

Fix a source f € H~!(R?) and consider the energy functional Z, : H'(R?) x H'(R?) — R given
by

n 1
Z,(v,w) = 2 L. |Vv|? do + %/}1{2 |Vw|* dz.

The primal variational problem is the following.

Definition 3.3.1 (Primal variational problem). Minimize the energy Z, (v, w) over all pairs (v, w)
which satisfy the PDE constraint V - (AVv) — Aw = f in R%

The primal variational principle (3.3.1) is well posed in the sense that it is assumed at a pair (v, wy),
and this pair is unique. Moreover, the function u, = v, + in~'w, is the unique solution of the
original problem (3.1) and energies coincide. These results are stated in the following Lemma (see
[20]).

Lemma 3.3.1. Fix a source f € H~(R?) with compact support and vanishing average. Then

1. the infimum
inf {In(v,w) S (v,w) € HY(R?) x HY(R?),V - (AVv) — Aw = f} (3.13)

is attained at a pair (v,,w,) € H'(R?) x H'(R?).
2. The minimizing pair (v, wy) is unique (up to an additive constant).
3. The function u, = v, + in~'w,, is the unique solution of the original problem (3.1).

4. & (uy) = I (vy, wy).

Proof. Let s > 0 be such that the source f is contained in the open ball B,(0), i.e. supp(f) C Bs(0).
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1. If we are able to define the functional Z,, on a non-empty subspace X C H'(R?) in such a way
that it is convex, then a known result of the calculus of variation guarantees the existence of a
pair (v,,w;,) € X x X such that

Ly (vg, wy) < I (0, W)

forall (0,w) € X x X with V- (AV?) — Aw = f. Therefore the infimum (3.13) is attained on
X x X. Itis easy to verify that the space

X{UGHI(RQ) :/ udafO}
B.(0)

satisfies the previous requirements.

2. If we show that the original problem (3.1) is equivalent to the primal variational problem and
that the original problem has a unique solution, then the minimizing pair is unique. We prove
the latter in 3); we now prove that the two problems are equivalent.

Since the pair (v,, w;) is a minimizer of the functional Z,,, then for any (¢, w) € X x X the
real function j : R — R, defined by

J(t) = Iy (vy + 10, wy + tw),
is C*(R) and has a stationary point at ¢ = 0. Therefore

d .
%J(t) =0

t=0

for every (v,w) € X x X that satisfies V - (AV?) — Aw = 0. From the previous equation we
obtain

1 1
0=n Vo, -Vodr + — Vuw, - Vi dx =n Vo, -Vodr + — Vuw, - AVidx
R2 N Jr2 R2 N Jr2

where we used the constraint for the second equality. The preceding equation is the weak
formulation of the second equation in (3.11). Since (v,), w,) is a solution of (3.11), then

)
Uy = Uy + 511),,

is a solution of the original problem.

3. We now prove that the original problem (3.1) as a unique solution. To see that, define the
sesquilinear form
b: X xX—=C

(un, 1) > baun, up) = _7:/

R
The form b is bounded on X: for all u1, us € X we have

anyVu1 Vg dx.
2

|b(u1,uQ)|§/ la, Vui Vs | dz
R2

<(1+ 772)1/2||VU1HL2(R2)HVU2||L2(R2)
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. . 2 2 2 2
by Cauchy-Schwartz inequality. Now, [|[Vaul|;2gey = [Jullx — [[ull72(p, 0y < lullx, so
[b(ur, uz)| < fluall x fluzllx-

The form b is also coercive on X. Indeed for all u € X we have
bl 0] = Reb(u,) = [ [Vl do = ]Vl e

but )
||VU||L2(R2) = [Jullx — ||UHL2(31(O))
2
> |lullx — el VullL2ge),

where the last estimate follows from the Poincaré inequality. Hence ||Vu||2LQ(R2) > c|\u||§( and
therefore |b(u, u)| > c|lu| y for any v € X.

Lax-Milgram Lemma yields that there exists a unique weak solution u,, € H'(R?) of the
original problem (3.1).

4. A direct calculation verifies 4).
O
The connection between the primal variational principle and the configuration of the system is as
follows. Let u,, be the unique solution of the original problem (3.1). Then, since the Lemma 3.3.1
implies there exists a unique pair (v, wy) such that 7, (v,, w,) as the smallest value, and such that
En(uyn) = I (v, wy). (3.14)

Then it follows that
En(uy) < Iy(v,w) (3.15)

for all (v, w) € H'(R?) x H'(R?) satisfying V - (AVv) — Aw = f. The inequality (3.15) can be used
to prove non-resonance results as n = 1; — 0. Indeed, in order to show that a given configuration is
non-resonant, it suffices to construct a sequence of trial functions (¢,,1,) that satisfy the constraint
of the primal variational problem

V. (AV¢,) — Ay, =f  inR? (3.16)

and have bounded energies Z,, (¢, ¥,).

3.3.2 The dual variational principle

We now introduce the dual variational principle, which is a maximum principle and characterizes
the energy &, as a constrained maximum. For a fixed source f € H ! (R?) we introduce the dual
energy J, : H'(R?) x H'(R?) — R given by

o) = [ fode—3 [ Vepde—7 [ (Vi
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Definition 3.3.2 (The dual variational principle). Maximize the energy .7,(v,w) over all pairs (v, )
which satisfy the PDE constraint V - (AV%) + nAv = 0 in R?.

As the primal variational principle, problem (3.3.2) is well posed: the following Lemma holds.
Lemma 3.3.2. Fix a source f € H~1(R?) with compact support and vanishing average. Then

1. the supremum
sup {7,(0.0) (0,0 € F1'(R2) x FY(#). ¥ - (AV) + ndo = 0}

is attained at a pair (v,,,) € H'(R?) x H'(R?).
2. The maximizing pair (v, Yy, ) is unique (up to an additive constant).
3. The function u,, = vy, + i1, is the unique solution of the original problem (3.1).
4. Ey(uy) = Tn(vy, n).
Proof. Let us prove one point at a time. Since the proof of this Lemma is similar to the previous one,
we only discuss the different points.

1. Using arguments analogous to those of the previous Lemma, we find the existence of a
maximizing pair (v, ¥y).

2. Since the pair (v,,1),) is a maximizer of the functional 7, then for any 4,4 € H'(R?)NL?(R?)
the real function i : R — R, defined by i(t) = J (v, + 0,1, + t1), has a minimum in ¢ = 0.
Hence, by imposing that the first derivative vanishes in ¢ = 0, we have

0= fzﬁdm—n/ an-Vﬁdx—n/ anV@dx.
R2 R2 R2

The constraint V - (AV4) + A% allows you to replace @ in the previous equation, hence we
have

0= fi) dr + Vo, - AV dz — Vb, - Vi dz.
R2 R2 R2

The previous equation is the weak formulation of the first equation of (3.11), for which we
conclude that the function u,, = v, + i1, is a solution of V - (AVu,,) = f on R?.

3. Using techniques similar to the previous Lemma we have the uniqueness of (3.1).

4. For the energy equality, we have

En(uy) — Ty(vg, y) = g/R? |Vu77|2dm — Tn(vnsby)

:77/Rz|V’U,7|2d.%‘+77/RQ |V1/}n\2da:—/szwdx
=— [ Vv, AV, — / (=Unf + Uy V - (AVy)) dx — fidx =0.
R2 R2

R2

O
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The connection between the dual variational principle and the configuration of the system is as
follows. Let u, be the unique solution of the original problem (3.1). Then, since Lemma 3.3.2
implies that there exists a unique pair (v, 9,) such that 7, (v,, 1) has the maximum value, and
such that

En(un) = Iy(vy, ¥y).
Hence, for any (v, 1) € H*(R?) x H'(R?) satisfying V - (AV¢) + nAv = 0 in R? we have

En(uy) = Iy (v, ¥). (3.17)

The inequality (3.17) can be used to prove resonance results as n = 7; — 0. Indeed, in order to show
that a given configuration is resonant, it suffices to construct a sequence of trial functions (¢, 1)
that satisfy the constraint of the dual variational problem

V- (AVY) +1A¢, = 0 (3.18)

and have unbounded energies 7,,(¢y, 1) at the limit  — 0.

3.4 Results in elliptic geometry

In this section we discuss the results obtained in elliptical geometry. First we derive the analytic
expression of the trial functions that we will use in the variational principles 3.3.1 and 3.3.2. Finally
we prove our results.

3.4.1 Perfect plasmon waves in elliptic geometry

Since our proofs of resonance and non-resonance of a configuration are based on the primal and
dual variational principle, it is suffices to construct a sequence of trial functions (¢y,, ¢,,), defined
on all R?, that satisfy (3.16), or (3.18), and that have bounded, or unbounded energy. This trial
functions are built from the perfect plasmon waves.

A perfect plasmon wave of bounded metallic particle 2 C R” is an harmonic bounded function on
R™\ 09, which is continuous at the interface 92 between the metallic object and the surroundings,
and whose exterior and interior normal derivatives at interface have a constant ratio. The study
of perfect plasmon waves has been extensively addressed through explicit calculations in simple
geometries in the physical literature. A more theoretical study can be found in [14].

We now construct the perfect plasmon waves in elliptical geometry. Fix an elliptic radius R > 0 and
consider the following problem

{v (AVY) =0  inR2 5.19)

Y =O(|z|™1), as |z| = 400

where

. -1 in ER(O)
Ale) = {+1 in R2\ £x(0) (3.20)
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for the perfect plasmon wave ¢ : R?> — R. The problem (3.19)-(3.20) is equivalent to the
problem

AYp=0 in R2\ 9€R(0)
|, =9 on 9Ex(0)
SEl= 5 on 9x(0)
b(x) = O(jz| ™) as |z| — oo,

By using the method of separation of variables, we can derive the functions %, and, consequently,
the function

ekt cos(kv) for (u,v) € [0,R) x [0, 2m),

3.21
e?kBe=kt cos(kv)  for (u,v) € [R,+0) x [0,27), (8.21)

Y (/~L7 V) = {
is a solution of (3.19) for any k € N.

3.4.2 Resonance results

First of all we prove that if the configuration, (see Definition 3.1.1), does not have a core, then the
configuration is always resonant, and therefore the source f is always cloaked.

Theorem 3.4.1 (No core implies resonance for sources at any distance). Assume that the configuration
has no core (i.e. © = ). Let f = FH'|0ER(0) with 0 # F : 9ER(0) — R be a source at a distance ¢ > R.
Then the configuration is resonant, i.e.

E,(u,) — 400 asn — 0.

Proof. Fix the radii R, ¢ > 0 and let ) be an arbitrary sequence such that ; — 0 as ¢ — +o0. Since f
is a source with zero average and F € L*(9&,(0)), we expand f in Fourier series

+o00
f= Z(ak cos(kv) + by sin(kv))H' |0, (0)

k=1

where {ax }ren, {bk }ren € [?(R). Without loss of generality, assume that the source is composed
only by even harmonics, i.e. b, = 0 for all k£ € N. Hence we write

+oo
f= Zakfm
=1

where f, = cos(kv)H![9E,(0). Since F # 0 there exists at least one k > 1 such that aj, # 0.

Choose

Un (Ma V) =0

ﬁ}n(u, V) = Akd}k(/}“a V)
where 1y, (1, v) is the perfect plasmon wave found in (3.21) for the radius ¢, and A;, € R has to be
defined below. Clearly, the pair (v,, @, ) satisfies the PDE constraint of the dual variational problem,
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Definition 3.3.2. Moreover we have

En(un) = Tn(vy, wy) = Tn(0,wy) = /]R2 fioy dr — g/RZ Vi, |? da

o2k R "
= /asq(o) ay, COS(kV))‘neTq cos(kv)dv — §7Tk(262kR - 1))\%
o2k R n R
= WakeTq)\n - 571’]6(262 — 1)/\727
ekt 2 2kR
Z WakeTq)\n — n’ﬂ'k)\ne .
Choosing A, — +oco with A2 — 0 we obtain &, (u,) — +oc for n — +o0 . O

Let us now consider the configuration with core. In circular geometry, according to [2, 20], the
configuration is resonant only if the source f is supported inside the disk of radius R*. In particular,
although in [2] and in [20] the energy can only be dissipated in the shell Br(0) and in all R?
respectively, the critical radii (3.10) found coincide.

Using the equation (1.22) we expect to find similar results, and in particular we expect the
configuration to be resonant only if the source is located inside the ellipse with critical radius

_3R-—r

==
where r is the elliptical radius of the core, R is that of the shell. This result is expressed in the
following Theorem. However, this attempt is only partially confirmed. Indeed Chung et al. [9]
showed that if the energy is dissipated only in the shell, then the critical radius is given by

R* (3.22)

(3.23)

. JBR-=7)/2 for R<3r,
|2(R-r)  forR> 3r.

The reason for this discrepancy cannot be fully attributed to the region where the energy is
dissipated. Indeed, the variational principles depend on the choice of test functions, which bound
the energy of the solution. With the choice of test functions made in the following theorem, we
were able to prove that the configuration is resonant for R* as in (3.22) and not as in (3.23). Hence,
for R > 3r, we obtain a weaker estimate for R*, i.e. the one that we obtain is smaller than the one
obtained in [9].

However, on one point our result agrees with that expressed in [9]: the critical radius R* does not
depend on the foci (+a, 0) of the ellipses.

Theorem 3.4.2 (Non-resonance beyond R*). Let ¥ = £,.(0) C Er(0) and let
+1 inY,
Alx) =< -1 in&r(0)\ 3,
+1 in R? \(‘:R(O)

Let f = FH'0&,(0), 0 # F : 08,(0) — R R, be a source at a distance ¢ > R with zero average and
F € L2(0€,(0)). Then the configuration is non-resonant if ¢ > R* where

R*=(3R—1)/2
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Proof. Since the source F' € L?*(9&,(0), let us expand it into Fourier series
F(v) = z:(a;€ cos(kv) + Br sin(kv)) = Foven + Fodd-
k>1

Clearly, it suffices to show that the configuration is non-resonant for feven = Feven™'|[9&,(0) and
fodd = FoaaM!|0&,(0) separately Let us now prove this for feven.

[ = Zakfk

k>1
where fj, = cos(kv)H!|0&,(0) and {ax }r>1 C I*(R).

Accordingly set

The scheme of the proof is the following. In Step 1 we build the appropriate test functions to be
used in the primal variational principle; in Step 2 we calculate the energies associated with these
test functions and show that the energy of the solution is limited by the previous energies.

Step 1: Construction of test functions. Fix a sequence of loss parameters n = {1, } tending to zero. In
order to use the primal variational principle, we need to construct test functions (v,,, wy,) such that

V- (AVv,) — Aw, = f (3.24)
and such that they have finite energy Z,, (v,, w,) < +o0 uniformly with respect to 7. Our strategy is
to decompose the source f into a low frequency part and a high frequency part as

F=ro e =N i, M= e
k<k* k> k>
where k* has to be chosen and will depend on 7. We also decompose the solution into a high

and low frequency part by setting v,, = vl]"w + v?,igh. With these choices, we rewrite the constraint

equation (3.24) in the form

v};’“’ satisfies V - (AVv};’W) = flow on R?
vi‘zigh satisfies V - (Avaigh) — fhish on 9&,(0)
wy, satisfies — Aw, = —V - (AVoDE") + fMish - on R?
We now derive the individual test functions.

Step 1a: construction of vﬁ;’w. The function v}fw is pieced together using variants of the perfect plasmon
waves (3.21). We set

ekt cos(kv) for0<p<r,

(11, ) e?kre=ki cos(kv) forr <u<R,
O (p,v) =

R e2k(r=R) gku cos(kv) forR<u<g,

e?klatr=R) o=k cos(kv)  for p > q,

and v € [0,2m). The functions 95 (u, ) have the following properties. First, they are continuous
on R?. Then for every z € R? \ 9€,(0) they satisfy V - (AVy) = 0, since along 9&,(0) they have a
jump into the normal flux

(7~ Vo — 2kl (a+2r=28) cos ().

) |asq(o):
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Therefore, )\, 0, satisfies

V- (AV/\k@k) = Ozkfk on RZ
if we set
ap

Ak = — 2kek(qg+2r—2R) *

(3.25)
Therefore by setting v}low = > k<i~ Ak we have that
V- (AVO) = (1 Vor™) e, o)

= Z Ak (—2kek<q+27"—2R) cos(kv))H' [9€,(0)
k<k*

= Z ay, cos(kv)H' | 0€,(0)

k<k*

_ flow

H'0&,(0)

Step 2a: construction of vzigh and w,,. The function v%igh is constructed from the elementary plasmon

waves V;, for the elliptic radius ¢. This functions are not tuned to solve V - (AVV;,) = 0 on 9&,(0) or
OER(0). We set

. ek cos(kv) for0<p<gq
Vk(“a V) = 2kg —k
e*"le~ " cos(kv) forpu > g
for v € [0, 2). Since A(z) = 1 near 9&,(0) we have
n- Ak = —2ke"? cos(kv).
YVl e, 0= —2ke™ cos(k
Therefore by setting v 8" = 37 pop- AxVi with
ag
Ap= 2k 2
k ek (3.26)

we have on 0&,(0) that
V- (AVypieh) = fhieh,

We emphasize that vgigh is not a solution on all of R? due to normal flux jumps at 9€,(0) and dER(0).
To correct this, we choose w, such that

~Aw, = — V- (AVyhigh) 4 fhish

=— > M-V agr(o)}ﬂagr(o)
k>k*

- > Ai(n- VVk)|a€R(O)H1 |0ER(0).

k>k*

We use the previous equation to define w,.

Step 2: Calculation of energies. Now let us calculate the energy for the choice v,, = v};’w + vgigh and w,.

It is in this step that we choose the low-high frequency cutoff, k* = k*(n) to ensure that Z, (v, wy,)
remains uniformly bounded as n — 0.
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Step 2a: Energy of vﬁgu’. A long but straightforward calculation shows that

/ \Vvlow|dx = Z |)\k|2/2 |Vur|? de

k<k*

—r 3 [ h(262 2@ a2R) _ go2k(2r—R) _

k<k*
_nr \ak|2 2kr 2k(2r+q—2R) 2k(2r—R)
= Z Z W(?e + 2e — 2e —
k<k*
< Cn Z Iak|2e2k(2Rfr7q) max{l, ek(r+q72R)}2
E<k*

where we used the definition of A\ equation (3.25). Then if ¢ > 2R — r we have

/ \Vvhlgh|dsc <Cn Z lax|? < Cn

k<k*

which is obviously bounded. If R* < ¢ < 2R — r we have

/ |v,U10W|dI, < 077 Z |0¢k‘2 2k*(2R—r— q)

k<k*

Step 2b: Energy of v,]f,igh. The energy of vgigh is easier to control

/ VohiE dp =y 3 \Ak|2/ VVi? de

k>k*

_nrT |C¥k\ 2k
T4 ke%q( =1
k>k*

nm 2
< > el < Cn

E>k*
where we used the definition of A equation (3.26).

Step 2c: Energy of w,,. We have

1 2 c high high
_ < ||V - Voushy o phig
/2 |§7wn| dx H (A Uﬁ ) f ‘ 2(R2)

|ak\ 2 2k 2 _2kR
= — E k e + 2k%e )
2,2k
ey ke q

< g Z |ak|2(62k*(r—q) + er*(R—q))

N k>Fk*

<72|a|22qu

k:>k*

46

(3.27)

(3.28)
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We now balance the right hand sides of the bounds (3.27) and (3.28). We have

2k*(2R—-r—q) le%*(qu)

ne
Ui

that is

§ o~ R,

Hence we choose k* = k*(n) to be the smallest integer such that

p< e HDO-R) ang 1 wmn)
n

With this choice of  we have
1 x .
7/ |Vw,,|2 dx < C’Z \ak|26k (R—7)2k™ (R—q)
n Jr2 k>1

and
77/Rz V0o | dir < CZ g [2e0F +D(r—R) 2k" (2R=1—0)
k<1

Thusif ¢ > R* = (3R —r)/2, the energy Z, (v,, w,) is bounded as p — 0. The proof is complete.
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Conclusion

In this work we presented the basics of electromagnetic cloaking, focusing on two different schemes:
cloaking by transformation optics and cloaking by anomalous localized resonance. It is known that
the geometry of the problem has a strong influence on the cloaking properties of the system, and a
full understanding is still missing. In this thesis we carefully analyzed the relatively simple case
of elliptical geometry and we have seen that some results have remarkable differences compared
to the ones for circular geometry. Indeed, cloaking is a relatively new phenomenon and still little
is known, both on practical implementation and on theoretical study. Our work was theoretical
and, although dedicated only to a particular geometry, problems and research challenges appeared
several times.

First of all, the result expressed by Theorem 3.4.2 is a partial result that we have not been able
to improve. Future work must improve this result, or at least find out why it is not possible to
obtain it, in view of a better understanding of the phenomenon of cloaking by anomalous localized
resonance. Furthermore, CALR must also be studied from a geometric point of view: it is in fact
necessary to understand how it occurs in relation to the geometry of the system. In particular, in
[24] it is stated that the radial configuration is the one that hides best among all possible geometries.
We aim at proving a rigorous mathematical justification of this result for CALR.

Another technological problem is the following. In Chapter 3 we have considered a dielectric
permittivity with a matrix-shell-core character. The method presented in [20] was stated with
A(z) = +1 in the core. It would be interesting to extend the results obtained to the case in which
A(x) # 1 in the core, and, in particular, to find permittivities A(z) that maximize or minimize the
cloaking phenomenon for the same sets. In fact, the resonance of the configuration depends on
the loss parameter 7 and on A(z), therefore it would be interesting to study the dependence of the
energy on these two parameters, and to relate the speed with which it diverges to A(z).

A final problem we pose is the following. In both Chapter 2 and Chapter 3 we have considered
systems in R2. It is known [13] that cloaking for transformation optics can happen in dimensions
n > 2, meaning that if ¢ is non-negative, then boundary measurements determine o up to change
of variables. Therefore, to obtain cloaking, we only need to find systems for which the analogue
of Theorem 2.2.2 holds. It would be interesting to study the case of prolate and oblate ellipsoidal
systems in R3. For cloaking by anomalous localized resonance the question is different. Indeed,
in [3] it is proved that CALR does not occur for spherical systems in R3, except with anisotropic
permittivity. It would be interesting to study the case of ellipsoidal systems in R?, both with the
spectral methods and with the variational methods. Unfortunately, variational methods need a
more careful study, since they are essentially based on perfect plasmon waves, which do not exist
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in R3 for circular systems.
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Appendix A

Sturm-Liouville problem

Consider the equation
Af=0 inQ, (A1)

where ) = E x F' = [0, 1] x [0, 1]. Suppose we can write (x, y) = ¢(z)¢(y) with ¢(x) and ¢(y) to
be determined. Proceeding formally we have

0? 0? 0%¢

2
80(e) = (o + ) A)) = V) G50 + 60 5

() =0

AL

Since the two terms of the right hand sine of this equation are functions of z, y separately, they must
be constants. In particular, we have

g (A.2)

b(z) = —\o(x) for 2 € [0,1],
Y(y) = + P (y) fory € [0,1],

with use of Newton’s notation for derivatives. The number A € R is the eigenvalue of problem (A.2)
and must be determined.

To completely determine the solutions of (A.2) it is necessary to assign initial conditions. In fact the
original problem has some conditions at the boundary. WLOG we assume that

9(.’1:70) = 0, 9(0’ y) — O7
for f : [0,1] — R given. The boundary conditions (A.3) on 6 translate into conditions for ¢, ¥
¢(0) =0, (0)=0,
A4
{¢<1> =0 ¢a)y(1) = f(x) (A4)

Focusing only on the conditions on ¢, we se that they are not Cauchy conditions: they are assigned
at different points in the interval [0, 1]. Therefore the problem (A.2)-(A.4) is not a Cauchy problem,
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and we cannot solve it using the existence and uniqueness theorems. Indeed the problem (A.2),
(A.4) is a global problem: the solution must exist in the whole interval [0, 1] for the boundary
conditions to be applied. The equation (A.2) with the relative data at the boundary (A.4) constitutes
the Sturm-Liouville problem.

We now give an abstract formulation of the Sturm-Liuville problem
-y =Xy (A.5)

on [0, 1] with A € C and with boundary condition

with a3 + 32 # 0, (A.6)

{ aoy(0) + Boy'(0) =
with a2 + 82 # 0. (A7)

0
ary(1) + By’ (1) =0

Our intent is to show that there exists a family of solutions which constitutes an orthonormal basis
of L?, as well as to determine the eigenvalues. In order to do that we introduce the spaces!

Dy=1{g:[0,1] = R,ge C', ¢ € AC,¢" € L?, g satisfies (A.6)}

Dy ={g:[0,1] =R, g C', g € AC,g" € L?, g satisfies (A.7)}.

We define also D = Dy N D;. We will look for the solutions to the Sturm-Liouville problem in
the real vector space D. We define L : D — L?([0, 1]) to be the operator with rule g — Lg = —g”.
Clearly the operator L is linear. It is also injective on D.

Definition A.1. Let hg € Dy, Lhg =0, hg # 0. Leth, € Dy, Lhqy =0, hy 75 0.

The functions hg, h; clearly exist. Indeed, by taking an initial condition that satisfies (A.6) or (A.7)
respectively, we can use the global existence and uniqueness theorem and guarantee not only
existence of the solutions, but also hg, h1 € C2.

Definition A.2. Let W : [0, 1] — R be the function given by

ho(z)  hi(x)
ho(x)  hi(2)

W(z) = det

We claim that T is constant, and W # 0. Indeed, W € C* with

W'(z) = det Poz) () + det ho(@) () =0+ det ho(@)  M(z) =0,

ho(z) - B (x) hg(x)  hi(z) gho(z) gl ()

and this proves that W is constant. If it were W (0) = 0, the columns would be linearly dependent
and would exist some constant ¢ # 0 with ho(x) = chi(z) and hj(x) = ch)(x) for all z € [0, 1]. But

1A function f : I C R — Ris absolutely continuous f € AC if for every € > 0 there is a positive number 6 > 0
such that whenever a finite sequence of pairwise disjoint sub-intervals (ay,by) of I satisfies >, (by, — ax) < ¢ then

Zk(f(bk) - f(llk)) < e
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then a1 ho(1) + B1hy(1) = c(arhi(1) + B1h4(1)) = 0 and therefore also (A.7) would be satisfied. So
ho € Dy U Dy, but the hypothesis is that the only function » € D with Lh = 0is h = 0, which
contradicts the fact that hy # 0.

Considering that IV is constant and not zero, by rescaling iy we can assume that W (z) = —1 for all
z €10,1].

Definition A.3. Let & : [0, 1] x [0,1] — R be the function given by

h(z,2) = { 0@ M(z) Osw<z<l
T,z) = ho(2)hi(z) 0<z<z<1.

Note that k is continuous and symmetric. Since k € L%([0, 1] x [0, 1]), we define the Hilberts-Schmidt
operator T : L%([0,1]) — L2([0,1]) by

(Tf)(x) = k(z,2)f(2)dz.

[0,1]

Since k is real and symmetric, T is self-adjoint. Moreover, since T is a Hilbert-Schmidt operator, T’
is also compact.

Lemma A.1. The range of T'is D, i.e. Tf € D for every f € L?([0,1]). Furthermore, for all h € D there
exists f € L?([0,1]) such that T f = h.

The lemma implies that
L(Tf)=f VfelL*[0,1)),T(Lh)=h  VheD.
So T is the inverse map of L.
Proof. First of all, f € L?([0,1]) implies f € L'([0,1]). Since k € C*([0,1]?), we have k(z,-)f(-) €

L'(]0,1]), therefore (Tf)(z) is well defined for every x € [0,1]. By the dominated convergence
theorem we have T'f € C([0, 1]). Moreover, by the definition of it follows that

1 x
(Tf)(z) = hol) / ha(2)£(2) dz + ha (2) / ho(2)£(2) dz (A8)

and given that hg, hy € C*, hof, hi f € L}, it follows that Tf € AC.

From the above formula it follows that
(T (@) = ho(o) | M) () = ol = 1a() ) 4 142 [ hole)f(2) d -+ hafan () )

= ho(l’)/ hi(2) f(2)dz + R (x) /; ho(2)f(z)dz:= S

almost everywhere. Nevertheless, we note that S is well defined everywhere and is continuous. Since
Tf € AC we have

(Tf)(@) = (T)(0) + / (T (w) du = TF)(0) + / " S(u) du € C*((0,1])
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hence Tf € C*, with (T f)" = S everywhere. S is also in AC, so (T'f)" exists in L', with

1

(Tﬂ«miﬁ@{/fnuﬁ@wmhd@hﬂ@f@)+w@)43m@vwwu+hxmhamfm>

=—f(z) a.e.,
(A.9)

where we used the fact that h] = h{ = 0 and the definition of W = —1. Hence (T'f)" € L*([0,1]).
Moreover it follows from (A.8)

awmzmméhwvww, @ﬁwz%mAhWV@w,

uwmzmm/hwww@7 @ﬁm=mmﬁhmﬁww

0
and T 'f satisfies (A.6) and (A.7). This proves that T'f € D, i.e. that the range of T is a subset of D.

From (A.9) it follows that L(T f) = f for all f € L. Furthermore, for every h € D we have Lh € L.
So choosing f = Lh in the previous relation we find L(T'Lh — h) = 0. But TLh — h € D and by
hypothesis L is injective in D, so T'Lh = h. Since h is arbitrary, this gives the range of T'is D. O

Since T is a Hilbert-Schmidt operator, its spectrum is given by {0} U {uy, }nen, where every u, is a
real eigenvalue. Moreover p,, — 0 when n diverges, and dim Ker(T' — u,I) < +o0o. Actually
Lemma A.2. dim Ker(T — p,,1) = 1 for every n € N.

Proof. Since pi,, is an eigenvalue, we have dim Ker(T' — p,,I) > 1. Suppose that the dimension is
greater than 2, and let ¢1, ¢> be two independent functions in Ker(T' — u,I). Since p,¢; = T¢;
we have ¢; € D for j = 1,2. However, they are solutions of y” = 0, and since thery are linearly

independent, they are a basis of the solutions of 3" = 0. So every solution of 3" = 0 should satisfy
(A.6) and (A.7) at the same time, which is impossible since the Cauchy problem

has a solution even when aga + Byb # 0. O
Note that T'¢ = p¢ is equivalent to Lo = 1/puLT¢ = 1/u¢ when p # 0. So if 11 is an eigenvalue for
T, then 1/ is an eigenvalue for L. We then deduce the following theorem.

Theorem A.1. There exist a sequence {\, }nen C R and an orthonormal basis {e, }nen C L2([0,1]) such
that

1. 0 <|Xo| < |Mi| < ..., with |\, = +oo when n — 4o00;

2. ey € Dand Le,, = \pey, for every n € N.
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