

Abstract Neeman Dualities

Giovanni Rossanigo

Università degli Studi di Milano

April 9, 2025

Overview

1 The applications

2 The setup

3 The main results

4 Future directions

Some reminds...

Let us start by recalling some basic facts.

Some reminds...

Let us start by recalling some basic facts.

Remind

- Given a quasi-compact quasi-separated scheme X , it is possible to construct a $(\infty, 1)$ -category $\text{QCoh}(X)$ of quasi-coherent sheaves on X .

Let us start by recalling some basic facts.

Remind

- Given a quasi-compact quasi-separated scheme X , it is possible to construct a $(\infty, 1)$ -category $\text{QCoh}(X)$ of quasi-coherent sheaves on X . This is a **stable**, **compactly-generated** and **closed symmetric monoidal** $(\infty, 1)$ -category under the (derived) tensor product $-\otimes- : \text{QCoh}(X) \times \text{QCoh}(X) \rightarrow \text{QCoh}(X)$.

Some reminds...

Let us start by recalling some basic facts.

Remind

- ① Given a quasi-compact quasi-separated scheme X , it is possible to construct a $(\infty, 1)$ -category $\text{QCoh}(X)$ of quasi-coherent sheaves on X . This is a **stable**, **compactly-generated** and **closed symmetric monoidal** $(\infty, 1)$ -category under the (derived) tensor product $-\otimes- : \text{QCoh}(X) \times \text{QCoh}(X) \rightarrow \text{QCoh}(X)$.
- ② Furthermore, given a morphism $f : X \rightarrow Y$ of quasi-compact quasi-separated schemes, the pullback induces a **symmetric monoidal** and **colimit-preserving** functor $f^* : \text{QCoh}(Y) \rightarrow \text{QCoh}(X)$, the (derived) **pullback**.

... and a Yoneda embedding

In particular, the functor

$$\mathrm{QCoh}(Y) \times \mathrm{QCoh}(X) \rightarrow \mathrm{QCoh}(X), \quad (y, x) \mapsto f^*(y) \otimes x$$

induces on $\mathrm{QCoh}(X)$ the structure of a $\mathrm{QCoh}(Y)$ -module (in presentable $(\infty, 1)$ -categories).

... and a Yoneda embedding

In particular, the functor

$$\mathrm{QCoh}(Y) \times \mathrm{QCoh}(X) \rightarrow \mathrm{QCoh}(X), \quad (y, x) \mapsto f^*(y) \otimes x$$

induces on $\mathrm{QCoh}(X)$ the structure of a $\mathrm{QCoh}(Y)$ -module (in presentable $(\infty, 1)$ -categories).

The adjoint functor theorem provides then a **$\mathrm{QCoh}(Y)$ -enrichment of $\mathrm{QCoh}(X)$** : that is, there exists a functor

$$\underline{\mathrm{QCoh}(X)} : \mathrm{QCoh}(X)^{\mathrm{op}} \times \mathrm{QCoh}(X) \rightarrow \mathrm{QCoh}(Y), \quad (x, x') \mapsto f_* \underline{\mathrm{Hom}}_{\mathrm{QCoh}(X)}(x, x').$$

... and a Yoneda embedding

In particular, the functor

$$\mathrm{QCoh}(Y) \times \mathrm{QCoh}(X) \rightarrow \mathrm{QCoh}(X), \quad (y, x) \mapsto f^*(y) \otimes x$$

induces on $\mathrm{QCoh}(X)$ the structure of a $\mathrm{QCoh}(Y)$ -module (in presentable $(\infty, 1)$ -categories).

The adjoint functor theorem provides then a $\mathrm{QCoh}(Y)$ -enrichment of $\mathrm{QCoh}(X)$: that is, there exists a functor

$$\underline{\mathrm{QCoh}(X)} : \mathrm{QCoh}(X)^{\mathrm{op}} \times \mathrm{QCoh}(X) \rightarrow \mathrm{QCoh}(Y), \quad (x, x') \mapsto f_* \underline{\mathrm{Hom}}_{\mathrm{QCoh}(X)}(x, x').$$

Unfolding this functor produces an enriched Yoneda embedding (as well as an enriched dual Yoneda embedding).

... and a Yoneda embedding

In particular, the functor

$$\mathrm{QCoh}(Y) \times \mathrm{QCoh}(X) \rightarrow \mathrm{QCoh}(X), \quad (y, x) \mapsto f^*(y) \otimes x$$

induces on $\mathrm{QCoh}(X)$ the structure of a $\mathrm{QCoh}(Y)$ -module (in presentable $(\infty, 1)$ -categories).

The adjoint functor theorem provides then a $\mathrm{QCoh}(Y)$ -enrichment of $\mathrm{QCoh}(X)$: that is, there exists a functor

$$\underline{\mathrm{QCoh}(X)} : \mathrm{QCoh}(X)^{\mathrm{op}} \times \mathrm{QCoh}(X) \rightarrow \mathrm{QCoh}(Y), \quad (x, x') \mapsto f_* \underline{\mathrm{Hom}}_{\mathrm{QCoh}(X)}(x, x').$$

Unfolding this functor produces an enriched Yoneda embedding (as well as an enriched dual Yoneda embedding).

~~ We are interested in restricting the source.

A representability result

Theorem

Let $X \rightarrow Y$ be a proper scheme over a noetherian base.

Theorem

Let $X \rightarrow Y$ be a proper scheme over a noetherian base.

- Then the **restricted Yoneda embedding** \mathfrak{S} induces equivalence of $(\infty, 1)$ -categories

$$D_{coh}^b(X) \rightarrow \text{Fun}_{\text{Perf}(Y)}^{ex}(\text{Perf}^{op}(X), D_{coh}^b(Y))$$

and

$$D_{coh}^-(X) \rightarrow \text{Fun}_{\text{Perf}(Y)}^{ex}(\text{Perf}^{op}(X), D_{coh}^-(Y)).$$

A representability result

Theorem

Let $X \rightarrow Y$ be a proper scheme over a noetherian base.

- Then the **restricted Yoneda embedding** \mathfrak{y} induces equivalence of $(\infty, 1)$ -categories

$$D_{coh}^b(X) \rightarrow \text{Fun}_{\text{Perf}(Y)}^{\text{ex}}(\text{Perf}^{op}(X), D_{coh}^b(Y))$$

and

$$D_{coh}^-(X) \rightarrow \text{Fun}_{\text{Perf}(Y)}^{\text{ex}}(\text{Perf}^{op}(X), D_{coh}^-(Y)).$$

- If X is separated and of finite type scheme over an excellent scheme of dimension ≤ 2 , then the **restricted dual Yoneda embedding** $\tilde{\mathfrak{y}}$ induces an equivalence of $(\infty, 1)$ -categories

$$\text{Perf}(X)^{op} \rightarrow \text{Fun}_{\text{Perf}(Y)}^{\text{ex}}(D_{coh}^b(X), D_{coh}^b(Y)).$$

A representability result

Theorem

Let $X \rightarrow Y$ be a proper scheme over a noetherian base.

- Then the **restricted Yoneda embedding** \mathfrak{y} induces equivalence of $(\infty, 1)$ -categories

$$D_{coh}^b(X) \rightarrow \text{Fun}_{\text{Perf}(Y)}^{\text{ex}}(\text{Perf}^{op}(X), D_{coh}^b(Y))$$

and

$$D_{coh}^-(X) \rightarrow \text{Fun}_{\text{Perf}(Y)}^{\text{ex}}(\text{Perf}^{op}(X), D_{coh}^-(Y)).$$

- If X is separated and of finite type scheme over an excellent scheme of dimension ≤ 2 , then the **restricted dual Yoneda embedding** $\tilde{\mathfrak{y}}$ induces an equivalence of $(\infty, 1)$ -categories

$$\text{Perf}(X)^{op} \rightarrow \text{Fun}_{\text{Perf}(Y)}^{\text{ex}}(D_{coh}^b(X), D_{coh}^b(Y)).$$

Here $\text{Perf}(-)$ and $D_{coh}^b(-) \subseteq D_{coh}^-(-)$ denote the stable $(\infty, 1)$ -categories of perfect complexes, bounded and bounded below complexes with coherent (co)homology.

What was known before

There are plenty of precursors of this representability result in the realm of **triangulated categories**. Consider **point (1)**.

What was known before

There are plenty of precursors of this representability result in the realm of **triangulated categories**. Consider **point (1)**.

- ① In the case of X projective over a field, Bondal and Van den Bergh already described the essential image of \mathbb{A} on $\mathrm{hD}_{\mathrm{coh}}^b(X)$ in [BB02]. They don't say nothing about the functor \mathbb{A} being fully faithful.

There are plenty of precursors of this representability result in the realm of **triangulated categories**. Consider **point (1)**.

- 1 In the case of X projective over a field, Bondal and Van den Bergh already described the essential image of \mathbb{Y} on $\mathrm{hD}_{\mathrm{coh}}^b(X)$ in [BB02]. They don't say nothing about the functor \mathbb{Y} being fully faithful.
- 2 In [Nee18b], **Neeman** generalized this result to the case where X is proper over a noetherian ring. His theorem shows that the restricted Yoneda functor \mathbb{Y} gives an equivalence from the category $\mathrm{hD}_{\mathrm{coh}}^b(X)$ to the category of finite homological functors $\mathrm{hPerf}(X)^{\mathrm{op}} \rightarrow \mathrm{Mod}_R$.

What was known before

There are plenty of precursors of this representability result in the realm of **triangulated categories**. Consider **point (1)**.

- 1 In the case of X projective over a field, Bondal and Van den Bergh already described the essential image of \mathbb{Y} on $\mathrm{hD}_{\mathrm{coh}}^b(X)$ in [BB02]. They don't say nothing about the functor \mathbb{Y} being fully faithful.
- 2 In [Nee18b], **Neeman** generalized this result to the case where X is proper over a noetherian ring. His theorem shows that the restricted Yoneda functor \mathbb{Y} gives an equivalence from the category $\mathrm{hD}_{\mathrm{coh}}^b(X)$ to the category of finite homological functors $\mathrm{hPerf}(X)^{\mathrm{op}} \rightarrow \mathrm{Mod}_R$. Moreover, on the larger category $\mathrm{hD}_{\mathrm{coh}}^-(X)$, the functor \mathbb{Y} is full and the essential image is the category of locally finite homological functors $\mathrm{hPerf}(X)^{\mathrm{op}} \rightarrow \mathrm{Mod}_R$.

What was known before

There are plenty of precursors of this representability result in the realm of **triangulated categories**. Consider **point (2)**.

What was known before

There are plenty of precursors of this representability result in the realm of **triangulated categories**. Consider **point (2)**.

- ① In the case of X projective over a field, Rouquier already described the essential image of $\tilde{\mathcal{S}}$ on $\text{hPerf}(X)^{\text{op}}$ in [Rou08]. He doesn't say nothing about the functor $\tilde{\mathcal{S}}$ being fully faithful.

What was known before

There are plenty of precursors of this representability result in the realm of **triangulated categories**. Consider **point (2)**.

- 1 In the case of X projective over a field, Rouquier already described the essential image of $\tilde{\mathbb{X}}$ on $\text{hPerf}(X)^{\text{op}}$ in [Rou08]. He doesn't say nothing about the functor $\tilde{\mathbb{X}}$ being fully faithful.
- 2 In [Nee18a], **Neeman** generalized this result to the case where X is proper over a noetherian ring and finite-dimensional and quasi-excellent. His theorem shows that the restricted dual Yoneda functor $\tilde{\mathbb{X}}$ gives an equivalence from the category $\text{hPerf}(X)^{\text{op}}$ to the category of finite homological functors $\text{hD}_{\text{coh}}^b(X) \rightarrow \text{Mod}_R$.

There are plenty of precursors of this representability result in the realm of **triangulated categories**. Consider **point (2)**.

- 1 In the case of X projective over a field, Rouquier already described the essential image of $\tilde{\mathcal{X}}$ on $\text{hPerf}(X)^{\text{op}}$ in [Rou08]. He doesn't say nothing about the functor $\tilde{\mathcal{X}}$ being fully faithful.
- 2 In [Nee18a], **Neeman** generalized this result to the case where X is proper over a noetherian ring and finite-dimensional and quasi-excellent. His theorem shows that the restricted dual Yoneda functor $\tilde{\mathcal{X}}$ gives an equivalence from the category $\text{hPerf}(X)^{\text{op}}$ to the category of finite homological functors $\text{hD}_{\text{coh}}^b(X) \rightarrow \text{Mod}_R$. Moreover, on the larger category $\text{hD}_{\text{coh}}^-(X)^{\text{op}}$, the functor $\tilde{\mathcal{X}}$ is full and the essential image is the category of locally finite homological functors $\text{hD}_{\text{coh}}^b(X) \rightarrow \text{Mod}_R$.

Neeman's results are the interesting one: they underline two deep theorems on approximable triangulated categories.

Neeman's results are the interesting one: they underline two deep theorems on approximable triangulated categories.

Remark

Technically speaking, our result is **not** a generalization of Neeman's result. Actually, the representability theorems we are going to see are different theorems; they use completely different techniques!

Neeman's results are the interesting one: they underline two deep theorems on approximable triangulated categories.

Remark

Technically speaking, our result is **not** a generalization of Neeman's result. Actually, the representability theorems we are going to see are different theorems; they use completely different techniques!

Nonetheless, Neeman's result are what inspired us in proving our theorems. Hence the name **abstract Neeman dualities**.

Neeman's results are the interesting one: they underline two deep theorems on approximable triangulated categories.

Remark

Technically speaking, our result is **not** a generalization of Neeman's result. Actually, the representability theorems we are going to see are different theorems; they use completely different techniques!

Nonetheless, Neeman's result are what inspired us in proving our theorems. Hence the name **abstract Neeman dualities**.

In particular, they are statement about the functional analysis of stable $(\infty, 1)$ -categories. They reflect on three notion of finiteness:

Neeman's results are the interesting one: they underline two deep theorems on approximable triangulated categories.

Remark

Technically speaking, our result is **not** a generalization of Neeman's result. Actually, the representability theorems we are going to see are different theorems; they use completely different techniques!

Nonetheless, Neeman's result are what inspired us in proving our theorems. Hence the name **abstract Neeman dualities**.

In particular, they are statement about the functional analysis of stable $(\infty, 1)$ -categories. They reflect on three notion of finiteness:

- ① **Categorical** \rightsquigarrow compact objects.
- ② **Monoidal** \rightsquigarrow dualizable objects.

Neeman's results are the interesting one: they underline two deep theorems on approximable triangulated categories.

Remark

Technically speaking, our result is **not** a generalization of Neeman's result. Actually, the representability theorems we are going to see are different theorems; they use completely different techniques!

Nonetheless, Neeman's result are what inspired us in proving our theorems. Hence the name **abstract Neeman dualities**.

In particular, they are statement about the functional analysis of stable $(\infty, 1)$ -categories. They reflect on three notion of finiteness:

- ① **Categorical** \rightsquigarrow compact objects.
- ② **Monoidal** \rightsquigarrow dualizable objects.
- ③ **Geometric** \rightsquigarrow coherent objects.

Geometric $(\infty, 1)$ -categories and functors

We impose from the start an identification between the first two notion of finiteness.

Definition

A stable $(\infty, 1)$ -category \mathcal{C} is called **geometric** if:

- 1 It has a **symmetric monoidal structure** $\otimes_{\mathcal{C}} : \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$ compatible with colimits in both variables.
- 2 It is **compactly-generated by the dualizable objects**. That is, its compact objects coincide with the dualizable ones.

We impose from the start an identification between the first two notion of finiteness.

Definition

A stable $(\infty, 1)$ -category \mathcal{C} is called **geometric** if:

- 1 It has a **symmetric monoidal structure** $\otimes_{\mathcal{C}} : \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$ compatible with colimits in both variables.
- 2 It is **compactly-generated by the dualizable objects**. That is, its compact objects coincide with the dualizable ones.

A functor between geometric $(\infty, 1)$ -categories is defined to be a symmetric monoidal and colimit-preserving functor $f^* : \mathcal{B} \rightarrow \mathcal{C}$.

We impose from the start an identification between the first two notion of finiteness.

Definition

A stable $(\infty, 1)$ -category \mathcal{C} is called **geometric** if:

- 1 It has a **symmetric monoidal structure** $\otimes_{\mathcal{C}} : \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$ compatible with colimits in both variables.
- 2 It is **compactly-generated by the dualizable objects**. That is, its compact objects coincide with the dualizable ones.

A functor between geometric $(\infty, 1)$ -categories is defined to be a symmetric monoidal and colimit-preserving functor $f^* : \mathcal{B} \rightarrow \mathcal{C}$. These functors have lots of properties:

- 1 They fit into adjunctions $f^* \dashv f_* \dashv f^{(1)}$. These functors satisfy a **projection formula**

$$f_*(x) \otimes_{\mathcal{B}} y \xrightarrow{\sim} f_*(x \otimes_{\mathcal{C}} f^*(y)) \quad \text{for every } x \in \mathcal{C}, y \in \mathcal{B},$$

and some internal realizations.

Geometric $(\infty, 1)$ -categories and functors

We impose from the start an identification between the first two notion of finiteness.

Definition

A stable $(\infty, 1)$ -category \mathcal{C} is called **geometric** if:

- ① It has a **symmetric monoidal structure** $\otimes_{\mathcal{C}} : \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$ compatible with colimits in both variables.
- ② It is **compactly-generated by the dualizable objects**. That is, its compact objects coincide with the dualizable ones.

A functor between geometric $(\infty, 1)$ -categories is defined to be a symmetric monoidal and colimit-preserving functor $f^* : \mathcal{B} \rightarrow \mathcal{C}$. These functors have lots of properties:

- ① They fit into adjunctions $f^* \dashv f_* \dashv f^{(1)}$. These functors satisfy a **projection formula**

$$f_*(x) \otimes_{\mathcal{B}} y \xrightarrow{\sim} f_*(x \otimes_{\mathcal{C}} f^*(y)) \quad \text{for every } x \in \mathcal{C}, y \in \mathcal{B},$$

and some internal realizations.

- ② By [BDS16], there exists a sensible **Grothendieck-Neeman duality** theory.

The enriched Yoneda embedding

Let $f^* : \mathcal{B} \rightarrow \mathcal{C}$ be a geometric functor. Then the functor

$$\mathcal{B} \times \mathcal{C} \rightarrow \mathcal{C}, \quad (y, x) \mapsto f^*(y) \otimes_{\mathcal{C}} x$$

induces on \mathcal{C} the structure of a \mathcal{B} -module (in presentable $(\infty, 1)$ -categories).

The enriched Yoneda embedding

Let $f^* : \mathcal{B} \rightarrow \mathcal{C}$ be a geometric functor. Then the functor

$$\mathcal{B} \times \mathcal{C} \rightarrow \mathcal{C}, \quad (y, x) \mapsto f^*(y) \otimes_{\mathcal{C}} x$$

induces on \mathcal{C} the structure of a \mathcal{B} -module (in presentable $(\infty, 1)$ -categories).

We can therefore construct a **\mathcal{B} -enrichment of \mathcal{C}** via

$$\mathcal{C}(-, -) : \mathcal{C}^{\text{op}} \times \mathcal{C} \rightarrow \mathcal{B}, \quad (x, y) \mapsto \mathcal{C}(x, y) = f_* \underline{\text{Hom}}_{\mathcal{C}}(x, y)$$

by means of the pushforward f_* and the internal hom $\underline{\text{Hom}}_{\mathcal{C}}$. We think of $\mathcal{C}(x, y)$ as the \mathcal{B} -graph of morphisms $x \rightarrow y$ in \mathcal{C} .

The enriched Yoneda embedding

Let $f^* : \mathcal{B} \rightarrow \mathcal{C}$ be a geometric functor. Then the functor

$$\mathcal{B} \times \mathcal{C} \rightarrow \mathcal{C}, \quad (y, x) \mapsto f^*(y) \otimes_{\mathcal{C}} x$$

induces on \mathcal{C} the structure of a \mathcal{B} -module (in presentable $(\infty, 1)$ -categories).

We can therefore construct a **\mathcal{B} -enrichment of \mathcal{C}** via

$$\mathcal{C}(-, -) : \mathcal{C}^{\text{op}} \times \mathcal{C} \rightarrow \mathcal{B}, \quad (x, y) \mapsto \mathcal{C}(x, y) = f_* \underline{\text{Hom}}_{\mathcal{C}}(x, y)$$

by means of the pushforward f_* and the internal hom $\underline{\text{Hom}}_{\mathcal{C}}$. We think of $\mathcal{C}(x, y)$ as the \mathcal{B} -graph of morphisms $x \rightarrow y$ in \mathcal{C} .

Remark

A deep theorem by Heine (coupled with some easy computations with compactly-generated categories) shows that there exists a **fully-faithful** enriched Yoneda embedding $\mathfrak{y} : \mathcal{C} \rightarrow \text{Fun}_{\mathcal{B}^{\text{op}}}^{\text{ex}}(\mathcal{C}^{\text{op}}, \mathcal{B})$ defined by $x \mapsto \mathcal{C}(-, x)$.

The third notion of finiteness appears when certain t -structures are considered.

Definition

Let \mathcal{C} be a geometric $(\infty, 1)$ -category. A **geometric t -structure** is a t -structure $(\mathcal{C}_{\geq 0}, \mathcal{C}_{\leq 0})$ such that:

- 1 The t -structure is **accessible**. That is, $\mathcal{C}_{\geq 0}$ is presentable.
- 2 The t -structure is **compatible with filtered colimits**. That is, $\mathcal{C}_{\leq 0}$ is closed under filtered colimits in \mathcal{C} .
- 3 The t -structure is **right complete**.

The third notion of finiteness appears when certain t -structures are considered.

Definition

Let \mathcal{C} be a geometric $(\infty, 1)$ -category. A **geometric t -structure** is a t -structure $(\mathcal{C}_{\geq 0}, \mathcal{C}_{\leq 0})$ such that:

- 1 The t -structure is **accessible**. That is, $\mathcal{C}_{\geq 0}$ is presentable.
- 2 The t -structure is **compatible with filtered colimits**. That is, $\mathcal{C}_{\leq 0}$ is closed under filtered colimits in \mathcal{C} .
- 3 The t -structure is **right complete**.

We will furthermore say that the geometric t -structure is **tensor** if:

- (4) The connective objects $\mathcal{C}_{\geq 0}$ inherits the **symmetric monoidal structure** of \mathcal{C} .

Point (4) ensures a compatibility between the “geometric” objects and the compact-dualizable ones.

Black Box

Let \mathcal{C} be a geometric $(\infty, 1)$ -category and $\mathcal{G} \subseteq \mathcal{C}$ a *collection of compact generators*.

Then there exists a *geometric t-structure* $(\mathcal{C}_{\geq 0}, \mathcal{C}_{\leq 0})$ such that:

- 1 The coconnective objects are given by

$$\mathcal{C}_{\leq 0} = \{x \in \mathcal{C} \mid \pi_n \text{Hom}_{\mathcal{C}}(g, x) = 0 \text{ for all } g \in \mathcal{G}, n > 0\}.$$

- 2 Let \mathcal{E} be the smallest full subcategory which contains \mathcal{G} and is closed under finite colimits and extensions. Then the inclusion $\mathcal{E} \hookrightarrow \mathcal{C}$ extends to an equivalence of $(\infty, 1)$ -categories $\text{Ind}(\mathcal{E}) \rightarrow \mathcal{C}_{\geq 0}$.

Black Box

Let \mathcal{C} be a geometric $(\infty, 1)$ -category and $\mathcal{G} \subseteq \mathcal{C}$ a *collection of compact generators*.

Then there exists a *geometric t-structure* $(\mathcal{C}_{\geq 0}, \mathcal{C}_{\leq 0})$ such that:

- 1 The coconnective objects are given by

$$\mathcal{C}_{\leq 0} = \{x \in \mathcal{C} \mid \pi_n \text{Hom}_{\mathcal{C}}(g, x) = 0 \text{ for all } g \in \mathcal{G}, n > 0\}.$$

- 2 Let \mathcal{E} be the smallest full subcategory which contains \mathcal{G} and is closed under finite colimits and extensions. Then the inclusion $\mathcal{E} \hookrightarrow \mathcal{C}$ extends to an equivalence of $(\infty, 1)$ -categories $\text{Ind}(\mathcal{E}) \rightarrow \mathcal{C}_{\geq 0}$.

We are interested in the case where \mathcal{G} consists of a single object G . In this case we speak about the *t-structure generated by G* .

Black Box

Let \mathcal{C} be a geometric $(\infty, 1)$ -category and $\mathcal{G} \subseteq \mathcal{C}$ a **collection of compact generators**.

Then there exists a **geometric t-structure** $(\mathcal{C}_{\geq 0}, \mathcal{C}_{\leq 0})$ such that:

- 1 The coconnective objects are given by

$$\mathcal{C}_{\leq 0} = \{x \in \mathcal{C} \mid \pi_n \text{Hom}_{\mathcal{C}}(g, x) = 0 \text{ for all } g \in \mathcal{G}, n > 0\}.$$

- 2 Let \mathcal{E} be the smallest full subcategory which contains \mathcal{G} and is closed under finite colimits and extensions. Then the inclusion $\mathcal{E} \hookrightarrow \mathcal{C}$ extends to an equivalence of $(\infty, 1)$ -categories $\text{Ind}(\mathcal{E}) \rightarrow \mathcal{C}_{\geq 0}$.

We are interested in the case where \mathcal{G} consists of a single object G . In this case we speak about the *t-structure generated by G* . ↗ In general it is **not** tensor!

Black Box

Let \mathcal{C} be a geometric $(\infty, 1)$ -category and $\mathcal{G} \subseteq \mathcal{C}$ a **collection of compact generators**.

Then there exists a **geometric t-structure** $(\mathcal{C}_{\geq 0}, \mathcal{C}_{\leq 0})$ such that:

- 1 The coconnective objects are given by

$$\mathcal{C}_{\leq 0} = \{x \in \mathcal{C} \mid \pi_n \text{Hom}_{\mathcal{C}}(g, x) = 0 \text{ for all } g \in \mathcal{G}, n > 0\}.$$

- 2 Let \mathcal{E} be the smallest full subcategory which contains \mathcal{G} and is closed under finite colimits and extensions. Then the inclusion $\mathcal{E} \hookrightarrow \mathcal{C}$ extends to an equivalence of $(\infty, 1)$ -categories $\text{Ind}(\mathcal{E}) \rightarrow \mathcal{C}_{\geq 0}$.

We are interested in the case where \mathcal{G} consists of a single object G . In this case we speak about the *t-structure generated by G* . ↗ In general it is **not** tensor!

To fix this issue we consider the **preferred equivalence class of t-structures** generated by a compact generator. It often happens that inside this equivalence class there is a **geometric tensor t-structure**!

Black Box

Let \mathcal{C} be a geometric $(\infty, 1)$ -category and $\mathcal{G} \subseteq \mathcal{C}$ a **collection of compact generators**.

Then there exists a **geometric t-structure** $(\mathcal{C}_{\geq 0}, \mathcal{C}_{\leq 0})$ such that:

- 1 The coconnective objects are given by

$$\mathcal{C}_{\leq 0} = \{x \in \mathcal{C} \mid \pi_n \text{Hom}_{\mathcal{C}}(g, x) = 0 \text{ for all } g \in \mathcal{G}, n > 0\}.$$

- 2 Let \mathcal{E} be the smallest full subcategory which contains \mathcal{G} and is closed under finite colimits and extensions. Then the inclusion $\mathcal{E} \hookrightarrow \mathcal{C}$ extends to an equivalence of $(\infty, 1)$ -categories $\text{Ind}(\mathcal{E}) \rightarrow \mathcal{C}_{\geq 0}$.

We are interested in the case where \mathcal{G} consists of a single object G . In this case we speak about the *t-structure generated by G* . ↗ In general it is **not** tensor!

To fix this issue we consider the **preferred equivalence class of t-structures** generated by a compact generator. It often happens that inside this equivalence class there is a **geometric tensor t-structure**!

Warning

In these slides, we will always assume that every geometric tensor *t-structure* is in the **preferred equivalence class**.

With the datum of a geometric (tensor) t -structure we can define the finite objects in the geometry.

Definition

Let \mathcal{C} be a geometric $(\infty, 1)$ -category with a geometric t -structure. We say that an object $x \in \mathcal{C}$ is:

With the datum of a geometric (tensor) t -structure we can define the finite objects in the geometry.

Definition

Let \mathcal{C} be a geometric $(\infty, 1)$ -category with a geometric t -structure. We say that an object $x \in \mathcal{C}$ is:

- 1 **Pseudo-coherent** if it is n -connective $x \in \mathcal{C}_{\geq n}$ and almost compact in $\mathcal{C}_{\geq n}$.

With the datum of a geometric (tensor) t -structure we can define the finite objects in the geometry.

Definition

Let \mathcal{C} be a geometric $(\infty, 1)$ -category with a geometric t -structure. We say that an object $x \in \mathcal{C}$ is:

- 1 **Pseudo-coherent** if it is n -connective $x \in \mathcal{C}_{\geq n}$ and almost compact in $\mathcal{C}_{\geq n}$.
- 2 **Coherent** if it is pseudo-coherent and coconnective.

With the datum of a geometric (tensor) t -structure we can define the finite objects in the geometry.

Definition

Let \mathcal{C} be a geometric $(\infty, 1)$ -category with a geometric t -structure. We say that an object $x \in \mathcal{C}$ is:

- 1 **Pseudo-coherent** if it is n -connective $x \in \mathcal{C}_{\geq n}$ and almost compact in $\mathcal{C}_{\geq n}$.
- 2 **Coherent** if it is pseudo-coherent and coconnective.

The full subcategories $\text{Coh}(\mathcal{C}) \subseteq \text{PCoh}(\mathcal{C})$ spanned by coherent and pseudo-coherent objects are stable and thick subcategories of \mathcal{C} .

With the datum of a geometric (tensor) t -structure we can define the finite objects in the geometry.

Definition

Let \mathcal{C} be a geometric $(\infty, 1)$ -category with a geometric t -structure. We say that an object $x \in \mathcal{C}$ is:

- 1 **Pseudo-coherent** if it is n -connective $x \in \mathcal{C}_{\geq n}$ and almost compact in $\mathcal{C}_{\geq n}$.
- 2 **Coherent** if it is pseudo-coherent and coconnective.

The full subcategories $\text{Coh}(\mathcal{C}) \subseteq \text{PCoh}(\mathcal{C})$ spanned by coherent and pseudo-coherent objects are stable and thick subcategories of \mathcal{C} .

Remark

If \mathcal{C} admits a connective compact generator $G \in \mathcal{C}_{\geq N}$, then $\text{Coh}(\mathcal{C}) \subseteq \text{PCoh}(\mathcal{C})$ are also closed under tensor product with compact objects.

How do we compute $\text{Coh}(\mathcal{C}) \subseteq \text{PCoh}(\mathcal{C})$?

Theorem

Let \mathcal{C} be a geometric $(\infty, 1)$ -category equipped with a t -structure. Then:

How do we compute $\text{Coh}(\mathcal{C}) \subseteq \text{PCoh}(\mathcal{C})$?

Theorem

Let \mathcal{C} be a geometric $(\infty, 1)$ -category equipped with a t -structure. Then:

- 1 $\text{Coh}(\mathcal{C})^\heartsuit = \text{Coh}(\mathcal{C}) \cap \mathcal{C}^\heartsuit$ consists precisely of the compact objects of \mathcal{C}^\heartsuit .

How do we compute $\text{Coh}(\mathcal{C}) \subseteq \text{PCoh}(\mathcal{C})$?

Theorem

Let \mathcal{C} be a geometric $(\infty, 1)$ -category equipped with a *coherent* t -structure. Then:

- 1 $\text{Coh}(\mathcal{C})^\heartsuit = \text{Coh}(\mathcal{C}) \cap \mathcal{C}^\heartsuit$ consists precisely of the compact objects of \mathcal{C}^\heartsuit .

How do we compute $\text{Coh}(\mathcal{C}) \subseteq \text{PCoh}(\mathcal{C})$?

Theorem

Let \mathcal{C} be a geometric $(\infty, 1)$ -category equipped with a *coherent* t-structure. Then:

- 1 $\text{Coh}(\mathcal{C})^\heartsuit = \text{Coh}(\mathcal{C}) \cap \mathcal{C}^\heartsuit$ consists precisely of the compact objects of \mathcal{C}^\heartsuit .
- 2 $x \in \text{PCoh}(\mathcal{C})$ if and only if $\pi_n x \in \text{Coh}(\mathcal{C})^\heartsuit$ and $\pi_n x = 0$ for $n << 0$.
- 3 $x \in \text{Coh}(\mathcal{C})$ if and only if $\pi_n x \in \text{Coh}(\mathcal{C})^\heartsuit$ and $\pi_n x = 0$ for all but finitely many n .

In particular, $\text{PCoh}(\mathcal{C})$ is the left t-completion of $\text{Coh}(\mathcal{C})$.

How do we compute $\text{Coh}(\mathcal{C}) \subseteq \text{PCoh}(\mathcal{C})$?

Theorem

Let \mathcal{C} be a geometric $(\infty, 1)$ -category equipped with a **coherent** t -structure. Then:

- 1 $\text{Coh}(\mathcal{C})^\heartsuit = \text{Coh}(\mathcal{C}) \cap \mathcal{C}^\heartsuit$ consists precisely of the compact objects of \mathcal{C}^\heartsuit .
- 2 $x \in \text{PCoh}(\mathcal{C})$ if and only if $\pi_n x \in \text{Coh}(\mathcal{C})^\heartsuit$ and $\pi_n x = 0$ for $n \ll 0$.
- 3 $x \in \text{Coh}(\mathcal{C})$ if and only if $\pi_n x \in \text{Coh}(\mathcal{C})^\heartsuit$ and $\pi_n x = 0$ for all but finitely many n .

In particular, $\text{PCoh}(\mathcal{C})$ is the left t -completion of $\text{Coh}(\mathcal{C})$.

Definition

A geometric t -structure is called **coherent** if it is in the preferred equivalence class induced by a compact generator G such that $\pi_0 \text{Hom}_{\mathcal{C}}(G, \mathcal{C}_{\geq N}) = 0$ and:

How do we compute $\text{Coh}(\mathcal{C}) \subseteq \text{PCoh}(\mathcal{C})$?

Theorem

Let \mathcal{C} be a geometric $(\infty, 1)$ -category equipped with a **coherent** t -structure. Then:

- 1 $\text{Coh}(\mathcal{C})^\heartsuit = \text{Coh}(\mathcal{C}) \cap \mathcal{C}^\heartsuit$ consists precisely of the compact objects of \mathcal{C}^\heartsuit .
- 2 $x \in \text{PCoh}(\mathcal{C})$ if and only if $\pi_n x \in \text{Coh}(\mathcal{C})^\heartsuit$ and $\pi_n x = 0$ for $n << 0$.
- 3 $x \in \text{Coh}(\mathcal{C})$ if and only if $\pi_n x \in \text{Coh}(\mathcal{C})^\heartsuit$ and $\pi_n x = 0$ for all but finitely many n .

In particular, $\text{PCoh}(\mathcal{C})$ is the left t -completion of $\text{Coh}(\mathcal{C})$.

Definition

A geometric t -structure is called **coherent** if it is in the preferred equivalence class induced by a compact generator G such that $\pi_0 \text{Hom}_{\mathcal{C}}(G, \mathcal{C}_{\geq N}) = 0$ and:

- 1 For every $x \in \mathcal{C}_{\geq 0}$ with $\pi_0(x) \in (\mathcal{C}^\heartsuit)_c$, there exists a compact and connective object $p \in \mathcal{C}$ with a π_0 -epimorphism $p \rightarrow x$ such that $\pi_n(p) \in (\mathcal{C}^\heartsuit)_c$ is compact for every $n \in \mathbb{Z}$. \rightsquigarrow every π_0 -compact object as a π_n -compact approximation.

How do we compute $\text{Coh}(\mathcal{C}) \subseteq \text{PCoh}(\mathcal{C})$?

Theorem

Let \mathcal{C} be a geometric $(\infty, 1)$ -category equipped with a **coherent** t -structure. Then:

- 1 $\text{Coh}(\mathcal{C})^\heartsuit = \text{Coh}(\mathcal{C}) \cap \mathcal{C}^\heartsuit$ consists precisely of the compact objects of \mathcal{C}^\heartsuit .
- 2 $x \in \text{PCoh}(\mathcal{C})$ if and only if $\pi_n x \in \text{Coh}(\mathcal{C})^\heartsuit$ and $\pi_n x = 0$ for $n << 0$.
- 3 $x \in \text{Coh}(\mathcal{C})$ if and only if $\pi_n x \in \text{Coh}(\mathcal{C})^\heartsuit$ and $\pi_n x = 0$ for all but finitely many n .

In particular, $\text{PCoh}(\mathcal{C})$ is the left t -completion of $\text{Coh}(\mathcal{C})$.

Definition

A geometric t -structure is called **coherent** if it is in the preferred equivalence class induced by a compact generator G such that $\pi_0 \text{Hom}_{\mathcal{C}}(G, \mathcal{C}_{\geq N}) = 0$ and:

- 1 For every $x \in \mathcal{C}_{\geq 0}$ with $\pi_0(x) \in (\mathcal{C}^\heartsuit)_c$, there exists a compact and connective object $p \in \mathcal{C}$ with a π_0 -epimorphism $p \rightarrow x$ such that $\pi_n(p) \in (\mathcal{C}^\heartsuit)_c$ is compact for every $n \in \mathbb{Z}$. \rightsquigarrow every π_0 -compact object as a π_n -compact approximation.
- 2 The heart \mathcal{C}^\heartsuit is a **locally coherent** abelian 1-category.

We now need geometric functors preserving the “geometry”. Let $f^* : \mathcal{B} \rightarrow \mathcal{C}$ be a geometric functor and assume that both \mathcal{B} and \mathcal{C} are equipped with geometric tensor t -structures in the preferred equivalence classes.

We now need geometric functors preserving the “geometry”. Let $f^* : \mathcal{B} \rightarrow \mathcal{C}$ be a geometric functor and assume that both \mathcal{B} and \mathcal{C} are equipped with geometric tensor t -structures in the preferred equivalence classes.

Definition

Assume that f^* is right t -exact. We will say that f^* is:

- ① **Of finite cohomological dimension** if $f_*(\mathcal{C}_{\geq 0}) \subseteq \mathcal{B}_{\geq -N}$ for some $N \geq 0$.

We now need geometric functors preserving the “geometry”. Let $f^* : \mathcal{B} \rightarrow \mathcal{C}$ be a geometric functor and assume that both \mathcal{B} and \mathcal{C} are equipped with geometric tensor t -structures in the preferred equivalence classes.

Definition

Assume that f^* is right t -exact. We will say that f^* is:

- ① **Of finite cohomological dimension** if $f_*(\mathcal{C}_{\geq 0}) \subseteq \mathcal{B}_{\geq -N}$ for some $N \geq 0$.
- ② **Quasi-perfect** if it is of finite cohomological dimension and the right adjoint $f_* : \mathcal{C} \rightarrow \mathcal{B}$ preserves compact objects.

We now need geometric functors preserving the “geometry”. Let $f^* : \mathcal{B} \rightarrow \mathcal{C}$ be a geometric functor and assume that both \mathcal{B} and \mathcal{C} are equipped with geometric tensor t -structures in the preferred equivalence classes.

Definition

Assume that f^* is right t -exact. We will say that f^* is:

- ① **Of finite cohomological dimension** if $f_*(\mathcal{C}_{\geq 0}) \subseteq \mathcal{B}_{\geq -N}$ for some $N \geq 0$.
- ② **Quasi-perfect** if it is of finite cohomological dimension and the right adjoint $f_* : \mathcal{C} \rightarrow \mathcal{B}$ preserves compact objects.
- ③ **Quasi-proper** if it is of finite cohomological dimension and the right adjoint $f_* : \mathcal{C} \rightarrow \mathcal{B}$ preserves pseudo-coherent objects.

We now need geometric functors preserving the “geometry”. Let $f^* : \mathcal{B} \rightarrow \mathcal{C}$ be a geometric functor and assume that both \mathcal{B} and \mathcal{C} are equipped with geometric tensor t -structures in the preferred equivalence classes.

Definition

Assume that f^* is right t -exact. We will say that f^* is:

- ① **Of finite cohomological dimension** if $f_*(\mathcal{C}_{\geq 0}) \subseteq \mathcal{B}_{\geq -N}$ for some $N \geq 0$.
- ② **Quasi-perfect** if it is of finite cohomological dimension and the right adjoint $f_* : \mathcal{C} \rightarrow \mathcal{B}$ preserves compact objects.
- ③ **Quasi-proper** if it is of finite cohomological dimension and the right adjoint $f_* : \mathcal{C} \rightarrow \mathcal{B}$ preserves pseudo-coherent objects.

Notice that quasi-perfect satisfy the abstract Grothendieck-Neeman duality.

Quasi-proper functors, on the other hand, will satisfy the abstract Neeman dualities.

We prove the:

Theorem

Let $f^ : \mathcal{B} \rightarrow \mathcal{C}$ be a right t -exact geometric functor.*

- 1 *If f^* is quasi-perfect, then it is quasi-proper.*

We prove the:

Theorem

Let $f^* : \mathcal{B} \rightarrow \mathcal{C}$ be a right t -exact geometric functor.

- 1 If f^* is quasi-perfect, then it is quasi-proper.
- 2 Assume that both \mathcal{B} and \mathcal{C} are compactly generated by a coherent object, and that their unit are bounded. If f^* is quasi-proper and *of finite tor-dimension* then it is quasi-perfect.

Quasi-perfect vs quasi-proper

We prove the:

Theorem

Let $f^* : \mathcal{B} \rightarrow \mathcal{C}$ be a right t -exact geometric functor.

- 1 If f^* is quasi-perfect, then it is quasi-proper.
- 2 Assume that both \mathcal{B} and \mathcal{C} are compactly generated by a coherent object, and that their unit are bounded. If f^* is quasi-proper and **of finite tor-dimension** then it is quasi-perfect.

Definition

A right t -exact geometric functor $f^* : \mathcal{B} \rightarrow \mathcal{C}$ is **of finite tor-dimension** if it is left t -exact up to a shift.

Our first duality result is the:

Theorem

Let $f^ : \mathcal{B} \rightarrow \mathcal{C}$ be a quasi-proper functor.*

The first abstract Neeman duality

Our first duality result is the:

Theorem

Let $f^ : \mathcal{B} \rightarrow \mathcal{C}$ be a quasi-proper functor.*

Then there are equivalences of $(\infty, 1)$ -categories

$$\mathrm{PCoh}(\mathcal{C}) \rightarrow \mathrm{Fun}_{\mathcal{B}_c}^{\mathrm{ex}}(\mathcal{C}_c^{\mathrm{op}}, \mathrm{PCoh}(\mathcal{B})), \quad \mathrm{Coh}(\mathcal{C}) \rightarrow \mathrm{Fun}_{\mathcal{B}_c}^{\mathrm{ex}}(\mathcal{C}_c^{\mathrm{op}}, \mathrm{Coh}(\mathcal{B}))$$

induced by the restricted Yoneda embedding.

The first abstract Neeman duality

Our first duality result is the:

Theorem

Let $f^ : \mathcal{B} \rightarrow \mathcal{C}$ be a quasi-proper functor. Assume that \mathcal{B} is coherent. Assume furthermore that the compact generator G of \mathcal{C} is such that $\mathcal{C}(G, -) : \mathcal{C} \rightarrow \mathcal{B}$ detects connective and coconnective objects and that $\pi_0 \text{Hom}_{\mathcal{C}}(G, \mathcal{C}_{\geq N}) = 0$ for some integer $N > 0$. Then there are equivalences of $(\infty, 1)$ -categories*

$$\text{PCoh}(\mathcal{C}) \rightarrow \text{Fun}_{\mathcal{B}_c}^{\text{ex}}(\mathcal{C}_c^{\text{op}}, \text{PCoh}(\mathcal{B})), \quad \text{Coh}(\mathcal{C}) \rightarrow \text{Fun}_{\mathcal{B}_c}^{\text{ex}}(\mathcal{C}_c^{\text{op}}, \text{Coh}(\mathcal{B}))$$

induced by the restricted Yoneda embedding.

The first abstract Neeman duality

Our first duality result is the:

Theorem

Let $f^* : \mathcal{B} \rightarrow \mathcal{C}$ be a quasi-proper functor. Assume that \mathcal{B} is coherent. Assume furthermore that the compact generator G of \mathcal{C} is such that $\mathcal{C}(G, -) : \mathcal{C} \rightarrow \mathcal{B}$ detects connective and coconnective objects and that $\pi_0 \text{Hom}_{\mathcal{C}}(G, \mathcal{C}_{\geq N}) = 0$ for some integer $N > 0$. Then there are **equivalences of $(\infty, 1)$ -categories**

$$\text{PCoh}(\mathcal{C}) \rightarrow \text{Fun}_{\mathcal{B}_c}^{\text{ex}}(\mathcal{C}_c^{\text{op}}, \text{PCoh}(\mathcal{B})), \quad \text{Coh}(\mathcal{C}) \rightarrow \text{Fun}_{\mathcal{B}_c}^{\text{ex}}(\mathcal{C}_c^{\text{op}}, \text{Coh}(\mathcal{B}))$$

induced by the **restricted Yoneda embedding**.

The proof uses a more general statement about the Yoneda embedding between geometric $(\infty, 1)$ -categories and an explicit computation of its kernel.

The second abstract Neeman duality

Our second (and significantly more involved) duality result is the:

Theorem

Let $f^ : \mathcal{B} \rightarrow \mathcal{C}$ be a quasi-proper functor satisfying the assumption of the first abstract Neeman duality.*

Then there exist an equivalence of $(\infty, 1)$ -categories

$$\mathcal{C}_c^{op} \rightarrow \text{Fun}_{\mathcal{B}_c}^{ex}(\text{Coh}(\mathcal{C}), \text{Coh}(\mathcal{B}))$$

induced by the restricted dual Yoneda embedding.

The second abstract Neeman duality

Our second (and significantly more involved) duality result is the:

Theorem

Let $f^* : \mathcal{B} \rightarrow \mathcal{C}$ be a quasi-proper functor satisfying the assumption of the first abstract Neeman duality. Assume furthermore that \mathcal{C} admits a morphism of \mathcal{B} -universal descent to a **regular** $(\infty, 1)$ -category. Then there exist an **equivalence of $(\infty, 1)$ -categories**

$$\mathcal{C}_c^{op} \rightarrow \text{Fun}_{\mathcal{B}_c}^{ex}(\text{Coh}(\mathcal{C}), \text{Coh}(\mathcal{B}))$$

induced by the **restricted dual Yoneda embedding**.

This result uses some **universal descent techniques** (as developed by [Mat22] and [BS17] in a different setting) to reduce the claim to a statement of regular $(\infty, 1)$ -categories.

The second abstract Neeman duality

Our second (and significantly more involved) duality result is the:

Theorem

Let $f^* : \mathcal{B} \rightarrow \mathcal{C}$ be a quasi-proper functor satisfying the assumption of the first abstract Neeman duality. Assume furthermore that \mathcal{C} admits a morphism of \mathcal{B} -universal descent to a **regular** $(\infty, 1)$ -category. Then there exist an **equivalence of $(\infty, 1)$ -categories**

$$\mathcal{C}_c^{op} \rightarrow \text{Fun}_{\mathcal{B}_c}^{ex}(\text{Coh}(\mathcal{C}), \text{Coh}(\mathcal{B}))$$

induced by the **restricted dual Yoneda embedding**.

This result uses some **universal descent techniques** (as developed by [Mat22] and [BS17] in a different setting) to reduce the claim to a statement of regular $(\infty, 1)$ -categories.

A geometric $(\infty, 1)$ -category is **regular** if compact and coherent objects coincide.

What we don't know

There are some questions that we should answer.

What we don't know

There are some questions that we should answer.

- 1 Is it possible to remove the quasi-properness assumption?

That is, can we extend the first theorem of these slides to arbitrary maps
 $f : X \rightarrow Y$ of noetherian schemes?

What we don't know

There are some questions that we should answer.

- 1 Is it possible to remove the quasi-properness assumption?

That is, can we extend the first theorem of these slides to arbitrary maps $f : X \rightarrow Y$ of noetherian schemes?

- 2 Can we prove some relative result in the style of Fourier-Mukai theory?

What we don't know

There are some questions that we should answer.

- 1 Is it possible to remove the quasi-properness assumption?

That is, can we extend the first theorem of these slides to arbitrary maps $f : X \rightarrow Y$ of noetherian schemes?

- 2 Can we prove some relative result in the style of Fourier-Mukai theory?

- 3 Can we formulate these results for more general $(\infty, 1)$ -categories?

We are interested in prestable and dualizable $(\infty, 1)$ -categories.

Thank you!

References

- Alexei Bondal and Michel Van den Bergh.
Generators and representability of functors in commutative and noncommutative geometry.
arXiv preprint math/0204218, 2002.
- Paul Balmer, Ivo Dell'Ambrogio, and Beren Sanders.
Grothendieck-Neeman duality and the Wirthmüller isomorphism.
2016.
- Bhargav Bhatt and Peter Scholze.
Projectivity of the Witt vector affine Grassmannian.
Inventiones mathematicae, 209:329–423, 2017.
- Akhil Mathew.
Faithfully flat descent of almost perfect complexes in rigid geometry.
Journal of Pure and Applied Algebra, 226(5):106938, 2022.
- Amnon Neeman.
The category $\mathcal{T}_c^{\text{op}}$ as functors on \mathcal{T}_c^b , 2018.
- Amnon Neeman.
Triangulated categories with a single compact generator and a Brown representability theorem.
2018.
- Raphaël Rouquier.
Dimensions of triangulated categories.
Journal of K-theory, 1(2):193–256, 2008.