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Introduction

Finite objects are generally simpler to manipulate than complex ones and a large part of mathematics
focuses on the development of methods that allow us to analyze infinite objects in terms of finite ones.
Although this approach is natural, it is not independent of choices. In fact, a working mathematician must
first select the appropriate notion of finiteness for the problem at hand and then determine the suitable
approximation techniques to use. Among the many areas of mathematics, this paradigm is particularly
relevant to derived and triangulated categories, which are the focus of this discussion.

Derived and triangulated categories were introduced by Verdier in his PhD thesis in the mid-1960s.
In the 1970s, Illusie proposed in [ ] and [I1I71] that an object in a triangulated category should be
considered finite—or more precisely, compact—if any map out of it commutes with arbitrary coproducts.
Many commonly used triangulated categories, such as compactly generated triangulated categories, contain a
wealth of such objects. This background is well-established in the literature. However, what is more recent
and less explored is the choice of approximation techniques, which necessitates the following.

Definition ([ , Definition 0.21]). Let 7 be a triangulated category with coproducts. We will say that
T is weakly approximable if there exists a compact generator G, a t—structure (T>0, T<o) and an integer N > 0
such that:

(1) G € T>_n and Homg (G, T>n) =0.
(2) Every object x € T fits into a triangle ¢ — x — d with ¢ € ((G))l"™N and d € T5;.

We will furthermore say 7 is approximable if the integer N can be chosen to further satisfy:
(3) In the triangle c — x — d of (2) we may strengthen the condition on ¢, we may assume c € (G) [=N,NJ,
Here (G)! =N is the full thick subcategory built from G by taking arbitrary extensions of finite coprod-
ucts of the shifts £G for i € [-N, N]. The subcategory ((G)) =™ N! is defined similarly; the only difference
is that we instead allow infinite coproducts.

Nonetheless, the approximating technique is in assumption (2) for weakly approximable triangulated
categories (and (3) for the approximable ones). It says that a 0-connective object x € T>( can be approxi-
mated by some construction of a finite object G up to a 1-connective error. It also says that the construction
can be iterated, thus allowing to approximate x up to smaller and smaller errors. Assumption (1) requires
instead a compatibility of the t-structure with the compact generator.

One interesting feature of approximability is that it offers a new perspective on the second notion of
finiteness available in triangulated categories. This second notion emerges when a t-structure is considered.
Specifically, if the categorical properties of a given triangulated category allow us to define compact objects,
then the choice of a t-structure enables us to define two subcategories, ‘.TE C T, which consist of “finite
objects in the geometry”. Objects in T, are those x € T such that, for every integer n > 0, there exists
a triangle ¢ — x — d, where ¢ € T, is compact and d € T>, is n-connective. On the other hand, the
objects of T? are the bounded objects in T, . These subcategories were introduced by Neeman in [ ,
Definition 0.16], under the names bounded pseudo-compact and pseudo-compact objects. The author traced this
terminology to [ , Remark 4.1.5].

The new perspective provided by approximability is further illuminated by the following result, which
can be found in [ , Theorem 0.3]).

Theorem (Neeman, Functors out of TF). Let R be a commutative noetherian ring, and let T be an R-
linear triangulated category with coproducts, and suppose it has a compact generator G € T such that
Homgy(—, G) is a G-locally finite cohomological functor. Assume further that 7 is approximable. Let T_ be
the one corresponding to the preferred equivalence class of t—structures. Consider the following functors

70 5 77 % Homg((7)°P, R-Mod).

Then:
(1) The restricted Yoneda J is full, and its essential image consists of locally finite cohomological functors.

(2) The composition o1 is fully-faithful, and its essential image consists of finite cohomological functors.
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In the statement, the locally finite cohomological functors are those R-linear cohomological functors f :
T — R-Mod such that, for every x € T, the R-module f(Zx) is finite for all i € Z and vanishes for i << 0.
The finite ones are those locally finite f such that, in addition to the above, f(£*x) vanishes for i >> 0.

Still in the word of approximable triangulated categories, we have a second and significantly more
involved result, which classifies locally finite (and finite) homological functors. The locally finite homological
functors are those homological functors f : T — R-Mod such that, for every x € T, the R-module f(Z£'x) is
finite for all i € Z and vanishes for i << 0, whereas the finite ones satisfy, in addition to the above, f(Z'x)
vanishes for i >> 0.

Theorem (Neeman, Functors out of 7). Let R be a commutative noetherian ring, and let T be an R-linear
category, approximable triangulated category, and assume there is a compact generator H € 7 such that
Homy (H, H[n]) is a finite R-module for all n € Z. Let T, and T? be the ones corresponding to the preferred
equivalence class of t-structures, and assume there is an object G € T? and an integer N > 0 with! T =
({(G))~. Consider the following functors

(T9)°P 5 (T7)°P % Homg (TP, R-Mod).

Then:
(1) The restricted Yoneda X is full, and its essential image consists of locally finite homological functors.

(2) The composition rolis fully-faithful, and its essential image consists of finite homological functors.

The reader can find it in [ , Theorem 0.4].

Overview

The objective of these pages is to prove a generalization of Neeman, Functors out of 7" and Neeman,
Functors out of T?. The main goals are the followings.

(1) First of all, we would like to enhance Neeman’s theorems. There are three natural candidates for
enhancing triangulated categories: differential graded categories, A.,-categories and stable (oo, 1)-
categories. Since all the three approaches have been shown to be equivalent in [ ]and [ 1,
we will work in the more natural and developed framework of stable (oo, 1)-categories. Furthermore,
because Neeman'’s results are formulated for linear triangulated categories, the appropriate general-
izations should occur within the context of enriched (oo, 1)-categories. A review of (oo, 1)-categories
and enriched (oo, 1)-categories can be found in the following sections.

(2) Secondly, we aim to allow enrichments over more complicated bases. To clarify this goal, note that
Neeman's statements can be interpreted in terms of schemes over an affine base. More precisely, if X is
a proper scheme over a noetherian ring R, then a non-trivial result [ , Example 3.6] shows that
the derived category of quasi-coherent sheaves Dy (X) on X is approximable and has a single compact
generator satisfying the assumptions of Neeman, Functors out of T.”. The machinery of Neeman,
Functors out of 72" then implies that every (locally) finite cohomological functor Dg.(X)&¥ — R-Mod
is represented by an object of ch(X)E (or Dgc(X) in the local case). These subcategories are not
mysterious: under the noetherianess assumption on X, they are actually Dz’oh(X) and D_; (X). Now, if
X is quasi-excellent and finite dimensional (or every closed subvariety admits a regular alteration in
the sense of de Jong [ ]), then the assumptions of Neeman, Functors out of TV are satisfied. Thus,
every (locally) finite homological functor D, (X) — R-Mod is represented by an object of Dgc(X) (or

Dye(X)¢ in the local case).
A more general result should allow R to be a non-affine scheme, leading to a relative result

proper

X—

proper

Spec(R) ~ X Y.

The noetherian assumption on R (and hence X) should be then regarded only as a computational tool.

!The subcategory ({G))n is defined to be the full thick subcategory of T which is closed under coproducts and at most N extensions
spanned by the shifts 2'G, for i € Z.



(3) Finally, it seems possible to remove the approximability assumption from Neeman, Functors out of
T.". Let T and G be as in the theorem. Neeman’s proof shows that every locally finite cohomological
functor admits a strong (G)n-approximating system, as described in [ , Definition 7.3]. More
specifically, if f : J® 5 R-Mod is a locally finite cohomological functor, then Proposition 7.10 in
loc. shows that there exists a filtered object f; — f, — ... and an isomorphism &(colim;>; fi) — f.
Since Remark 7.9 in loc. clarifies that these f; are in T, the theorem is nearly proved. However,
approximability is still required only to show that colim;>1 f; lands in T .

The third point seems the more unnatural, since we expect approximability to be, well, the approximation
technique of triangulated categories. We will achieve this result by exploiting the relative point of view
proposed in the second point and the higher categorical language of the first one. Indeed, our general-
izations of Neeman, Functors out of T¢f and Neeman, Functors out of TE’ will be placed in the realm of
rigidly-compactly generated (oo, 1)-categories and rigid functors. The Ind-completion is what implements the
choice of approximations”.

Remark (On Finiteness). Working with rigidly-compactly generated (oo, 1)-categories (which, from now
on, we will refer to as geometric (oo, 1)-categories) allows us to establish an equality between two different
notions of finiteness right from the start. Indeed, by definition, a geometric (oo, 1)-category is a symmetric
monoidal (oo, T)-category compactly generated by its dualizable objects, so that the categorical and monoidal
structures coincide. This equality between compact and dualizable objects enables us to employ methods from
both worlds. The third notion of finiteness will appear in our generalization of Neeman'’s statements since,
by introducing the input of a t-structure, the finite objects in the t-structure are not immediately related
to the other two finite objects. The challenge of understanding the relationships between these three (or,
in reality, two) notions of finiteness is what makes the functional analysis of stable (co, 1)-categories so
interesting’. In any case, the finite objects in the t-structure, the coherent objects, are the ones that capture
the geometry. Indeed, one might think of the choice of a t-structure as a choice of a geometry on a geometric
(00, 1)-category C. This idea is strongly supported when € arises as the derived (oo, 1)-category of quasi-
coherent sheaves on a noetherian scheme X, since by [ , Theorem 0.1] the set of aisles of compactly
generated tensor t-structures on QCoh(X) is in bijective correspondence with the set of Thomason filtrations
of X. To conclude, our generalization of Neeman'’s statements, which is placed in the realm of geometric
(0o, T)-categories, has to be thought as a new piece in the field of functional analysis of category theory.

Let us explain how the material is organized. Our work towards a generalization of Neeman'’s results
begins in Chapter 1, where we introduce geometric (oo, 1)-categories and geometric functors. Specifically,
in Section 1.1, we define a geometric (oo, 1)-category as a compactly generated stable (co, 1)-category €
equipped with a symmetric monoidal structure that is compatible with colimits, and such that the compact
objects coincide with the dualizable objects. These (oo, 1)-categories are specializations of stable homotopy
theories, since they are required to be compactly generated by the dualizable objects. A geometric functor is
then a colimit-preserving, symmetric monoidal functor f* : B — C. This definition has many consequences.
For instance, every geometric functor produces a double adjunction f* 4 . - f(1) and satisfies a projection
formula (see Proposition 1.1.9). Moreover, under certain finiteness assumptions, geometric functors satisfy
a categorical version of Grothendieck-Neeman duality (see Theorem 1.1.11).

Next, in Section 1.2, we introduce the third notion of finiteness by incorporating a geometric t-structure. A
t-structure on a presentable stable (oo, 1)-category is said to be geometric if it is accessible, compatible with
filtered colimits, and right complete. Our main result is Lemma 1.2.12, which shows that if a presentable
stable (oo, T)-category C is equipped with a collection of compact generators, then there exists a geometric t-
structure whose connective part C> is compactly generated by the given collection. We can view this result
as providing an interaction between the categorical and geometric structures. To ensure an interaction with
the monoidal structure, we restrict to t-structures whose connective part also inherits a monoidal structure.
We call these tensor t-structures. The monoidal unit 1¢ always determines a tensor t-structure. If the (oo, 1)-
category is also equipped with a connective compact generator, this standard t-structure defines a geometric
tensor t-structure.

2The language of (oo, 1)-categories is really needed here. Indeed, it is well known that the Ind-completion of a small triangulated
category need not to be triangulated.

3Who knows, in the future, it may become interesting to formulate results where the categorical and monoidal structures do not
coincide.



We will use geometric t-structures to define pseudo-coherent objects PCoh(C), essentially by adopting
Lurie’s definition of almost perfect complexes. In Section 1.3, we show that the subcategories spanned
by coherent and pseudo-coherent objects, Coh(€) C PCoh(C), are stable thick subcategories, and that the
0-connective pseudo-coherent objects are closed under geometric realizations. However, the main result
of this section is Remark 1.3.9. This result demonstrates that, under certain mild generation assumptions,
the standard t-structure is in the preferred equivalence class, and is geometric. Furthermore, it shows that
coherent and pseudo-coherent objects are closed under tensoring with compacts.

To explicitly compute the coherent and pseudo-coherent objects, in Section 1.4 we introduce coherent t-
structures. Roughly speaking, a t-structure is called coherent if it is generated by a single compact generator
G, and the heart defines a locally coherent abelian 1-category. We will also require that the higher homotopy
groups 7, G of the compact generator be compact in the heart. With this notion in hand, we will prove the
following.

Theorem. Let C be a presentable stable (oo, 1)-category equipped with a coherent t-structure. Then:
(1) Coh(€)¥ = Coh(€) N €Y consists precisely of the compact objects of €.
(2) x € PCoh(€) if and only if 7, x € Coh(€)" and 7, x = 0 for n << 0.
(3) x € Coh(€) if and only if 7t,x € Coh(€)" and 7, x = 0 for all but finitely many n.

In particular, PCoh(C) is the left t-completion of Coh(€).

In the last section, Section 1.5, we prove that, under certain mild assumptions, our pseudo-coherent
objects coincide with Neeman'’s pseudo-compact objects. The result is Proposition 1.5.7. The proof will
require a compact generator that satisfies assumption (1) of the definition of approximable triangulated
categories. This will conclude Chapter 1.

In Chapter 2, we study the categorical properties of all the different (oo, 1)-categories we have intro-
duced so far. We begin in Section 2.1 by analyzing the (oo, 1)-category Pr5'®, which describes compactly
generated stable homotopy theories. In particular, we will show that taking compact objects exhibits Pr® as
equivalent to Catfzii] » the (0o, T)-category of stable idempotent-complete (oo, 1)-categories, with the Ind-
completion serving as the quasi-inverse. We will then show that both of these (oo, 1)-categories can be
equipped with symmetric monoidal structures, and that Ind-completing refines to a symmetric monoidal
equivalence. Finally, we will identify the (o0, 1)-category of geometric (oo, 1)-categories with a full subcat-
egory of CAlg(Pr>®) and discuss the construction of limits in the former. We will then prove in Section 2.2
the main result of the chapter.

Theorem (Geometric Categories define Frobenius Algebra Objects). Let f* : B — C be a geometric functor,
and let ' : € — B denote the functor given by I'(x) = C(1e,x). Then (€, T) is a Frobenius algebra object of
Modg (Pry®). In other words, the composite map

weesCoseL B

is a duality datum in the symmetric monoidal (oo, 1)-category Mods (Pry®). In particular, € is not only
dualizable in Mod 5 (PrsLt"“ ), but also self-dual.

Our generalization of Neeman'’s results will occupy the all of Chapter 3. We begin with Section 3.1
where we will introduce quasi-perfect and quasi-proper functors. These are t-geometric functors f* : B — C,
meaning geometric functors that are also right t-exact, and whose right adjoint f, is right t-exact up to a
finite shift and preserves compact and pseudo-coherent objects, respectively. In particular, quasi-perfect
functors are the one satisfying the abstract Grothendieck-Neeman duality, while quasi-proper functors will
be the main object of Neeman dualities (which we still need to formulate). Corollary 3.1.7 shows that every
quasi-perfect functor is quasi-proper*, establishing a relationship between these two dualities.

Next, in Section 3.2, we prove our generalization of Neeman, Functors out of TP, The proof crucially
relies on the fact that for a geometric functor f* : B — C, the enriched Yoneda embedding induces an equiv-
alence of (oo, 1)-categories € — Funﬁg‘c (€GP, B). We then have two possible strategies. Either we restrict

4We also expect that the converse should hold under the assumption of finite tor-dimension.
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the Yoneda embedding at the source and prove that it still gives an equivalence with some subcategory
of functors, or either we restrict the target of the Yoneda embedding and identify its kernel. The second
approach appears more tractable and leads to the following result, which we will refer to as the first abstract
Neeman duality.

Theorem (Functors out of CF). Let f* : B — € be a quasi-proper functor. Assume that B is coherent.
Assume furthermore that the compact generator G of C is such that ¢(G,—) : ¢ — B detects connective and
coconnective objects and that o Home (G, €>n) = 0 for some integer N > 0. Then there are equivalences
of (oo, 1)-categories

PCoh(€) — Funf_ (¥, PCoh(B)), Coh(€) — Funj; (G, Coh(B))
induced by the restricted Yoneda embedding.

We will then turn our attention to our generalization of Neeman, Functors out of 7. We will begin in
Section 3.3 by introducing morphisms of universal descent, following [ Jand [ ]. Roughly speaking,
these are geometric functors for which the source can be written as a totalization of augmented cosimplicial
object built from the target. The main results of the section are Proposition 3.3.8 and Lemma 3.3.12. With
these results in our hands, we finally prove in Section 3.4 our generalization of Neeman, Functors out of
TY. We will first define regular (oo, 1)-categories as those geometric (0o, 1)-categories compactly generated
by their coherent objects, so that a generalization of Neeman, Functors out of 7! is immediate. We will then
exploit morphisms of universal descent with target a regular (oo, 1)-categories to deduce the second abstract
Neeman duality from the first one.

Theorem (Functors out of Coh(C)). Let f* : B — C be a quasi-proper functor satisfying the assumption of
the first abstract Neeman duality. Assume furthermore that € admits a morphism of B-universal descent to
a regular (oo, 1)-category. Then there exists an equivalence of (oo, 1)-categories

er — Funf (Coh(€), Coh(B))
induced by the restricted dual Yoneda embedding.

The “Assume furthermore” part of the theorem is the main obstruction. Indeed, the existence of mor-
phism of B-universal descent to a regular (oo, 1)-category is not known in general, due to the technical defini-
tion of B-morphism of universal descent (Remark 3.3.11).

Remark. We would like also to point out that some generalization of Neeman's results is already available.
The master’s thesis of Paul Barnreuther [B15] generalizes Neeman, Functors out of T0. His result, which is
a dg-enhancement of Neeman'’s theorem, works under the assumption T, C T?.

Finally, we Chapter 4 will turn our attention to applications. We will first describe the case of modules
(00, 1)-categories in Section 4.1. We will work in great generality, but the example to keep in mind is the
(00, 1)-category of spectra Sp. The main result is the following.

Theorem (Functors out of G for module categories). Let C be a t-geometric (oo, 1)-category and assume
that monoidal unit is a compact generator. Assume also that the t-structure is induced by Lemma 1.2.12. Let
f : x — y be a finitely presented map in CAlg(C) between coherent objects with y connective in Mod, (C).
Then the restricted Yoneda embedding induces equivalences

PCoh(y) — Funpe(y) (Perf(y)?,PCoh(x)),  Coh(y) — Funpy(,) (Perf(y)*?, Coh(x))

of (o0, 1)-categories. Here Perf(—) and Coh(—) C PCoh(—) stand for the full subcategory of perfect, that is
compact, coherent and pseudo-coherent objects.

The proof will not rely on the first abstract Neeman duality, but rather on the more general statement
Theorem 3.2.2.

More concrete examples will be presented in Section 4.2, where we will deal with schemes, and in
Section 4.3 where we will discuss spectral Deligne-Mumford stacks. Our result for schemes is the following.
It can be regarded as a generalization of [ , Corollary 0.5] and [ , Theorem 0.2].
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Corollary. Let f: X — Y be a proper map and assume that Y is noetherian.
(1) Then we have equivalences of (oo, 1)-categories

Dcoh

(X) = Funflygy, (Perf(X), Dy (Y)),  DEL(X) — Funfiyey, (Perf(X)°P, D8y (V).

coh

induced by the the restricted Yoneda embedding.

(2) Assume that X is separated and of finite type scheme over an excellent scheme of dimension < 2.
Then we have an equivalence of (oo, 1)-categories

Perf(X)°P — Funpe(v) (D&, (X), Doy (Y))

induced by the the restricted dual Yoneda embedding.

In the statement, Perf(—) and D?Oh(f) C D_.;,(—) denote the stable (oo, 1)-categories of perfect complexes,

bounded and bounded below complexes with coherent (co)homology.

The first two equivalences are a consequence of the first abstract Neeman duality, whereas the second
a consequence of the second abstract Neeman duality (and some results by de Jong on regular alterations).
In the case of spectral Deligne-Mumford stacks we have the following.

Corollary. Let f : X — Y be a morphism of finite cohomological dimension of quasi-compact quasi-
separated spectral algebraic spaces which is proper and locally almost of finite presentation. Assume that
QCoh(X) comes equipped with a compact generator G such that 1o Homgcon(x) (G, QCoh(X)>n) = 0 for
some integer N > 0. Assume also that Y is noetherian. Then we have equivalences of (oo, 1)-categories

PCoh(X) — Funpy v, (Perf(X)°?, PCoh(Y)), Coh(X) — Funpg¢(y) (Perf(X)°P, Coh(Y)).

induced by the restricted Yoneda embedding. As before, Perf(—) and Coh(—) C PCoh(—) denote the stable
(00, 1)-categories of perfect complexes, coherent and pseudo-coherent sheaves.

Unfortunately we do not know any application of the second abstract Neeman duality in E.-geometry.

Some Words on (oo, 1)-Categories

In these pages, we will freely speak the language of (oo, 1)-categories. In a nutshell, an (oo, 1)-category
should consist of a set of objects and a set of 1-morphisms between these objects. But, as opposed to
1-categories, an (oo, 1)-category also has 2-morphisms between 1-morphisms, 3-morphisms between 2-
morphisms, and so on. But now that we’ve started counting, and once mathematicians start counting,
they cannot stop: this is the co appearing in (oo, 1)-categories. The 1 stands for reminding us that all the
k-morphisms for k > 1 are “invertible”, at least up to higher invertible morphisms.

Despite the very simple intuition, (oo, 1)-category theory is generally considered an impenetrable sub-
ject by non-experts in the field. This is not the case for 1-category theory, and the reason is quite simple.
The higher coherence conditions needed to define what an (oo, 1)-category is make it impossible to write an
explicit definition of (0o, 1)-categories. As simple as it is, if it is not possible to define them, it is not possible
to use them.

Nonetheless, many natural objects in algebraic topology, homological algebra, and algebraic geometry
naturally exhibit the structure of an (oo, 1)-category. Experience tells us that this higher structure cannot
simply be discarded, as it leads to many unpleasant features. Great work has been done by Quillen [ ]
and many others to systematically organize these higher morphisms and coherence conditions. The com-
mon belief is that behind any homotopical information, there should be an (oo, 1)-category capturing it, and
model categories are exactly designed for this purpose. In particular, it is now accepted that (oo, 1)-categories
appear as objects in some model category of “(oco, 1)-categories”. Unfortunately, this perspective has an
enormous drawback: model categories of (0o, 1)-categories can be presented in a variety of formulations,
connected via a zig-zag of Quillen equivalences.

Among all such models, it is worth mentioning topological categories, simplicial enriched categories,
Segal categories, and last but not least, quasi-categories. We refer the reader to the survey [ ] for a com-
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parison of all these models. For the purpose of this introduction, we would like to closely analyze the most
successful definition of (oo, 1)-categories. Joyal’s theory of quasi-categories, introduced in [ ] and fully
developed in Lurie’s book [ ], stands out among all models for its simplicity and categorical behavior.
Indeed, within Joyal and Lurie’s framework, an (oo, 1)-category is just a simplicial set that satisfies a weak-
ened form of the Kan condition, which ensures the fillability of certain horns. Roughly speaking, the fill-
able horns provide all the higher coherence conditions needed for our simplistic idea of (oo, 1)-categories.
On the other hand, the categorical behavior of Joyal and Lurie’s framework becomes apparent when we
look for standard category-theoretic concepts. For example, their theory supports the notion of limits and
colimits [ , Chapter 4], a Yoneda embedding [ , Section 5.1], adjunctions [ , Section 5.2], ind-
categories and compact objects [ , Section 5.3], and presentable categories [ , Section 5.5]. The list
can go on, especially if we look at Lurie’s second book [ ]. There, all the tools needed for commuta-
tive algebra are developed. In particular, quasi-categories support the notion of operads [ , Chapter
2], which allows the construction of (symmetric) monoidal categories [ , Chapter 2], associative and
commutative algebra objects [ , Section 4.1], as well as an entire hierarchy of operads interpolating
increasing commutativity conditions [ , Section 5.1], left and right modules [ , Section 4.2], and
bimodules [ , Section 4.3]. The list can go even further.

Despite all of these successes, it is unnatural to treat quasi-categories as the true model of (oo, 1)-category
theory. In fact, none of the above mentioned “presentations of (oo, 1)-categories” should prevail over
the others. Many arguments can be found to support this idea, ranging from technical to philosophical
ones. Our argument is of the latter kind. Theoretically speaking, it is possible to argue that the theory of
quasi-categories is so successful because all the problems we have encountered in the framework of (oo, 1)-
category theory can be (more or less easily) solved within the framework of quasi-categories. There is no
reason for this to be the case in the future: mathematics may produce a problem that cannot be solved
within (or, hopefully, the solution is not within reach) the framework of quasi-categories.

Such arguments lead higher category theorists to wonder if it is possible to work in a model-independent
way. Even if a fully model-independent foundation for (oo, 1)-category theory has not yet been established,
it is possible to work model-independently, thanks to the work of Riehl and Verity [ ]. Their theory
of co-cosmoi allows us to treat all models of (oo, 1)-categories on the same footing. The drawback is that
00-cosmoi require quasi-categories to be defined. Nonetheless, co-cosmoi delineate a new perspective on
(00, 1)-categories: rather than asking what an (oo, 1)-category is, mathematicians should only know how to
manipulate them. This synthetic approach is taken to the extreme in the work of Cisinski, Cnossen, Nguyen,
and Walde [ ], which seems to construct (oo, 1)-category theory axiomatically”.

The takeaway from this section is that many articles in the literature are now written without even
mentioning simplicial sets or any particular model of (oo, 1)-categories and these pages will not be any less.

Enriching (oo, 1)-Categories

Neeman's theorems involve R-linear triangulated categories, placing their statement within the frame-
work of enriched 1-category theory. The corresponding (oo, 1)-categorical counterpart requires enriched
(00, 1)-categories, and since this theory is difficult and still relatively new, we provide a brief overview in this
section, along with detailed references for the reader’s convenience. We warn the reader: this section is
rather technical compared to the previous one. If the reader feels confident enough to believe that there is a
sensible Yoneda embedding for enriched (o0, 1)-categories, then it is possible to jump directly to Chapter 1.

As for (o0, 1)-categories, the idea behind enriched (oo, 1)-categories is quite simple. Suppose that B is a
monoidal (oo, 1)-category, that is an (oo, 1)-category equipped with a tensor product — ®3 —: B x B — B
satisfying the usual associativity and unital conditions up to higher invertible morphisms. Roughly speak-
ing, a B-enriched (oo, 1)-category € should consist of a space of objects €=, and, for every pair of objects
x,y € €7, a B-object C(x,y) called the graph of C. These data should come with composition morphisms
C(x,y) ®=3 Cly,z) — C(x,z) and identity morphisms 15 — C(x,x) equipped with the usual and coherence
conditions. Under suitable assumptions on B, the collection of (small) B-enriched (oo, 1)-categories should
assemble into an (oo, 1)-category Cat(%ow )- In particular, Cat%oo’” should enjoy all the feature of enriched

5We point out that this work is still under construction.



1-category theory: it should be functorial in B as well as inheriting a tensor product from B, it should have
a sensible theory of weighted limits and colimits, a Yoneda embedding, and so on and so forth. There are
essentially two ways of achieving this construction, each one with its one strengths and weaknesses.

The first one is due to Gepner-Haugseng [ ] and its based on categorical algebras. Gepner-Haugseng
associate to every space €~ a (generalized) non symmetric (oo, 1)-operad Ag.. This operad is constructed
by right Kan extending the inclusion {0} — AP to a functor Cat(.,1) — Fun(A°, Cat (1)), restricting it
to spaces Spc — Fun(A°P, Cat (., 1)) and then applying the (oo, 1)-Grothendieck construction to produce a
cocartesian fibration Ag. — A°P. Given a monoidal (oo, 1)-category B, categorical algebras in B with space
of objects C* are then simply A% -algebras in B. These objects encode the combinatorics of composition by
satisfying a Rezk-Segal condition, see [ , Section 2.4].

By letting the space vary, categorical algebras assemble into an (oo, 1)-category Alg_.(B), which, unfor-
tunately, does not exhibit Cat(BOO‘” straightaway. The reason is simple. Consider the case where B is the
(00, 1)-category of spaces Spc endowed with the cartesian monoidal structure. By [ , Section 4.4], cat-
egorical algebras in Spc correspond to Segal spaces. Since they do not form a model for (oo, 1)-categories,
the (oo, 1)-category Alg_ (Spc) cannot define® Cat o, 1. Completeness is missing. Fortunately, it is possible
to localize Alg_,,(B) at the complete B-enriched precategories to obtain a Bousfield localization

—_— ®
Alg...(B) i Cati 1)
“—

which constructs the (oo, 1)-category of B-enriched (oo, 1)-categories Cat(BoQ’”. This (oo, 1)-category has
many of the expected properties.

(1) It is functorial in B with respect to lax monoidal functors of monoidal (oo, 1)-categories by [ ,
Corollary 5.7.6]. To be precise, if f : B — B’ is lax monoidal, then a B-enriched (oo, 1)-category € is
sent to the B’-enriched (oo, 1)-category f..C whose space of objects is the same of €, but whose graph
of morphism is given by applying f to the graph of C.

(2) Moreover, if B is a presentably monoidal (oo, 1)-category, then Cat?oom is presentable, and Catg;j .
is lax monoidal with respect the tensor product of presentable (oo, 1)-categories thanks to [ ,
Proposition 5.7.8 and Proposition 5.7.16].

(3) If B is an [E,,-monoidal (oo, 1)-category then Cat?oom is En_1-monoidal. In particular, if B is sym-
metric monoidal then so is Cat?sooy” by [ , Corollary 5.7.12]. Moreover, consider two presentably
monoidal (oo, 1)-categories B and B’. Consider also a colimit preserving monoidal functor f* : B —
B’ and its right adjoint f, : B’ — B. The right adjoint f, is lax monoidal and, by [ , Proposition

5.7.17], the adjoints f* - f, induce an adjunction f* - f,. : Cat?oom — Cat?o/o’] ).

Gepner-Haugseng model achieved tons of results. For example, they proved the homotopy hypothesis
[ , Corollary 6.1.10], the Baez-Dolan stabilization hypothesis [ , Corollary 6.2.9], showed that
(00, 1)-categories enriched in spaces are modeled by (complete) Segal spaces [ , Theorem 4.4.7] and
that stable (oo, 1)-categories are enriched in the (oo, 1)-category of spectra, and that, for R an [E,-ring spec-
trum, every R-linear (oo, 1)-category is enriched in the (oo, 1)-category of R-module spectra. Nonetheless, it
is still complicated to work within the model. For example, it is non-trivial to show that this model exhibits
a Yoneda embedding.

The second approach solve this issue, by incorporating a sensible theory of presheaves directly in its
foundations. Hinich’s [ ] construction of enriched (oo, 1)-categories differs from Gepner-Haugseng
from the start. Instead of defining B-enriched (pre)categories with space of objects C~ as Ag~-algebras
in the monoidal category B, Hinich defines B-enriched (pre)categories as associative algebra objects in a
non-symmetric’ (oo, 1)-operad Quive~ (B). This non-symmetric (0o, 1)-operad is the operad of B-enriched
quivers with space of objects C~, and algebra objects therein correspond to B-enriched precategories with space
of objects €. These precategories, like categorical algebras, encode a notion of composition satisfying the
required coherence conditions. Nevertheless, Hinich’s model suffers of the same completeness issue of

6Here we are tacitly assuming that (oo, 1)-categories should be the same of Spc-enriched (oo, 1)-categories.
7Called planar in loc.



Gepner-Haugseng. The problem is solved by localizing at complete B-enriched precategories.

In Hinich’s model, a Yoneda embedding satisfying the usual Yoneda lemma is available although its
construction is quite convoluted and not internal to the model. The construction starts in [ , Section
6.1]. Given a B-enriched (o0, 1)-category C, and a left B-module D, the functor category Fun(C=, D) comes
equipped with a left action of Quive~ (B). If B has enough colimits and the left action on D respects these
colimits, then it is possible to define B-enriched functors € — D as left C-module in Fun(€~, D). Informally,
the left C-module structure on a functor f : €~ — D determines compatible maps

Clx,y) ® f(x) = f(y)

for every objects x,y € € with the expected functoriality. The collection of all B-enriched functors organize
into an (oo, 1)-category Fung (€, D) with the expected functoriality in € and D.

Defining enriched presheaves is then a matter of keeping track of the opposite. Indeed, if € is a B-
enriched (oo, 1)-category, then the opposite C°P will be a B™'-enriched (oo, 1)-category; here B™" is the
reverse monoidal category, where the tensor product is given by reversing the tensor product of B, that is
—1 ®™ —; = — ® —1. The space of object is now (€~)°P, and the graph is given in “reverse”. In particular,
since B is a B-bimodule, hence a left B-module, it is possible to define the (o0, 1)-category of B-enriched
presheaves on € as Funz: (C°P, B). More explicitly,

Funge (C°P, B) = LModeer (Fun((C~)°P, B).

In this construction, the existence of the Yoneda embedding follows by a general construction of commuta-
tive algebra: every associative algebra A in a monoidal category M as the structure of a left A® A°P-module.
If M = Quive~ (B) and A = €, then a left € ® C°P-action is induced on €. A folding construction® then shows
that Fun(C~ x (€~)°P, B) gets a left C ® C°P-action, where B is considered as a left B @ B"V-module. This

defines a B @ B™" functor & : € ® C°? — B called the folded Yoneda. Unfolding produces then a map

X : € — Fungw~ (C°P, B)

called the unfolded Yoneda embedding. The main result is then [ , Corollary at the end of Section 6.2].
It shows that & : € — Fung~(C°P,B) is fully-faithful in a suitable sense. Furthermore, it has also been
showed in [ ] that this Yoneda embedding is natural.

Despite providing a theory of presheaves, Hinich’s approach to enriched (oo, 1)-categories is rather
technical and convoluted. Fortunately, Macpherson [ ] showed that the two models presented so far
are actually equivalent, thus providing a Yoneda embedding in the more friendly Gepner-Haugseng’ model
of enriched (oo, 1)-categories. Nonetheless, there is another subtlety worth mentioning that appears having
applications in mind.

Indeed, many of the enriched (oo, 1)-categories appearing in algebraic topology and algebraic geometry
do not posses just a space of objects and a graph of morphism, but actually do form an (oo, 1)-category.
The enrichment is then given by some closed left action of a monoidal (oo, 1)-category. More explicitly, an
oo-category C carries a closed left action of a monoidal (oo, 1)-category B if for any object x in € the action
functor —®x : B — € admits a right adjoint €(x, —) : € — B. We think of €(x,y) € B as graph of morphisms
x — yin € for any x,y € C=. This picture is particularly fruitful within the realm of (derived and spectral)
algebraic geometry, since most of the (oo, 1)-categories appearing are presentable. Indeed, presentability
makes available the adjoint functor theorem [ , Corollary 5.5.2.9], thus providing a right adjoint to the
action —-® —: B x € —= C.

On one side it is clear that this structure is much simpler compared to Gepner-Haugseng and Hinich
homotopy-coherent enrichment, since all the required coherence conditions are inherited from the action
—®—: B x € — € On the other side, one can expect that this simplistic point of view is a loss of
generality. This is not exactly the case. Indeed, truncating the above mentioned coherence conditions
lead to a naturally T-enrichment of h€ over hB, and, surprisingly enough, both Gepner-Haugseng [ ,
Theorem 7.4.7] and Hinich [ , Proposition 6.3.1] showed that this 1-enrichment canonically refines to

81f two monoidal categories Mq and My, act from the left and from the right on a category M, then these data can be also encoded
by aleft Mq x MEV action on M. Folding and unfolding correspond to these different perspectives.
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an homotopy-coherent enrichment of € in B. In particular, a result of [ , Theorem 1.1] (and Theorem 1.2
in loc. for the presentable case) shows that (oo, 1)-categories with a closed left action of a monoidal (oo, 1)-
category B do indeed model the class of tensored B-enriched (oo, 1)-categories’. In formulas, Theorem 1.1
in loc. shows that there is an equivalence of (o0, 1)-categories

LMod s (Cat(o,1))" = Cat(2, (1)

between the full subcategory LMod 3 (Cat (1) )9 C LMods (Cat(so,1)) Of (00, 1)-categories with closed left
B-action and a non-full subcategory Cat93 < C Cat ) of tensored B-enriched (oo, 1)-categories.

Equation 1 is a special case of the more general [ , Theorem 1.5], which express different equiv-
alences depending on the action of B on € that it is considered on the left hand side, and the type of
enrichment on the right hand side.

Going from the most special to the most general notion, the left hand side of Equation 1 can be gen-
eralized to include Lurie’s pseudo-enriched in B in [ , Definition 4.2.1.25] and weakly enriched in B
(00, 1)-categories [ , Definition 4.2.1.12]. These are generalization of Lurie’s (oo, 1)-categories enriched in
B defined in [ , Definition 4.2.1.19]. On the right hand side instead one will then obtain Fun(B°P, Spc)-
enriched (oo, 1)-categories, and Fun(Env(B)°P,Spc)-enriched (oo, 1)-categories. Here Env(B) is the en-
veloping monoidal (oo, 1)-category of B, studied by Lurie [ , Section 2.2.4].

Let us focus on those (oo, 1)-categories which are weakly left tensored over B. Some of these categories
are already B-enriched (see [ , Theorem 1.5]). Denote by CatB Lur the (oo, 1)-category they span. The
first non-trivial fact is that for every pair of (oo, 1)-categories C and ZD weakly enriched in B, the collection
of functors € — D compatible with the weak left B-action forms an (co, 1)-category LaxLinFung (€, D).
The objects of this (oo, 1)-category are called lax B-linear functors. The second non-trivial fact is that this
(00, 1)-category can be identified with the right adjoint of a closed left Cat (., 1)-action on Cat3 L“r . That is,
there is an adjunction

-®¢

_ 3
Cat(ooJ) L CatB Lur
-
LaxLinFung (C,—)

for every (oo, 1)-category € weakly enriched in B. Now, as soon as the monoidal (oo, 1)-category B is
compatible with small colimits, there is a canonical left action of the (oo, 1)-category of spaces Spc, endowed
with the cartesian structure, on B. See [ , Remark 5.5.1.7]. This left action is compatible with the
monoidal structures of B and it can be shown that it induces a left closed action of Cat (., 1) on the (oo, 1)-

category Cat?3 . Given two B-enriched (oo, 1)-categories X and Y, let us denote by Fung (X, Y) the B-

enriched (oo, 1)- Category corresponding to the morphism object of Cat(ooJ - The following result clarifies
the role of these left actions.

Theorem ([ , Corollary 8.17)]). Let B be a monoidal (oo, 1)-category compatible with small colimits.
Then there is a Cat(,)-enriched equivalence

B Lur

x:Cati ) — Cat )

given by sending a small (oo, 1)-category weakly left tensored over B to its underlying (oo, 1)-category
enriched in B.

In particular, any (oo, 1)-category € weakly left tensored over B which is B-enriched determines (and
is determined by) a B-enriched (oo, 1)-category in the sense of Gepner-Haugseng and Hinich. Moreover,
given two (o0, 1)-categories € and D weakly left tensored over B, the (oo, 1)-category of lax linear functors
LaxLinFuns (€, D) corresponds to Funs (x(C),x(D)). This makes the Yondea embedding available in the
former model, and we phrase it as follows.

9More explicitly, a B-enriched (oo, 1)-category C is tensored if for any object b € B and x € € there is an object b ® x in € equipped
with a morphism b — €(x,b ® x) in B such that for any object y € € the canonical composition C(b ® x,y) — Homg(C(x,b ®
x), C€(x,y)) — Homg (b, C(x,y)) is an equivalence. The object b ® x is called the tensor of b and x.
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Theorem ([ , Theorem 10.11]). Let B be a monoidal (oo, 1)-category and let € be weakly enriched in
B. Then the canonical map

X : € — LaxLinFungr (C°P, B), x = C(—,x)
is fully-faithful.

In these pages we will apply this result in the case where C has a closed (left) action of a symmetric
monoidal (oo, T)-category B. Futhermore, to simplify the notation, we will denote by Fung what Heine
denotes by LaxLinFuns.

Remark. We conclude by recalling one more result in the literature: Berman [ ] constructed its own
theory of enriched (oo, 1)-categories. His theory actually supports a Yoneda embedding having all the
expected features. His approach seems also equivalent to Gepner-Haugseng construction. See Remark 1.1
in loc. Unfortunately, Berman work is still incomplete.

Conventions

Stable (oo, 1)-Categories. Recall that an (oo, 1)-category C is called stable if it is pointed and finite limits
and colimits coincide. Equivalently, € is pointed and every morphism admits a fibre and a cofibre, which
canonically agree.

We will denote by Cat{}, ;) the pointed (oo, 1)-category of small stable (co, 1)-categories and exact func-
tors. Recall that a functor is exact if it preserves finite limits and colimits. Given two small stable (oo, 1)-
categories C and D, we will denote by Fun® (€, D) the (o0, 1)-category of exact functors between; this is the
full subcategory of Fun(€, D) spanned by the exact functors.

t-structures. Let Cbe a stable (00, 1)-category. A t-structure (€>¢, C<o) on € will be graded homologically.
That is, we imagine C as linearized in the following way

® 11 o on 1 — ...

We will think of objects in C>;, as existing at the left on n, whereas objects in €<, will exists on the right.
In particular, we will call these objects n-connective and n-coconnective. The inclusions of the connective and
coconnective objects admit a left and right adjoint respectively

N TN
C 1 ng ezn L ¢

N

icn T>n

Let C¥ = €50NC€<, denote the heart of the t-structure. We will denote by 7, : € — C the functor T<oT>0[—n]
for any n € Z, and refer to m, as the n-th homotopy group of the t-structure. We will also add a superscript
(for example, 7i$) if more categories with t-structure are considered. Finally, we will denote by

e =Je . e =[Jewm, e=enet

n>0 n>0

the full subcategories of € spanned by the connective, coconnective and bounded objects.

Presentable (oo, 1)-Categories. Let C and D be (oo, 1)-categories. If € and D have finite limits, we will
denote by Fun'®(C, D) denote the full subcategory of Fun(C, D) spanned by those functor which are left
exact: that is, those functors which preserve finite limits.

We will denote by Pr" the (oo, 1)-category of presentable (oo, 1)-categories. Its objects are presentable
(00, 1)-categories, that is (oo, 1)-categories which are closed under all colimits (as well as small limits by
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[ , Proposition 5.5.2.4]), and moreover generated in a weak sense by a small category. The morphisms
of Pr" are continuous functors, that is, functors that preserve all colimits. If € and D are presentable, we let
Fun" (€, D) denote the (0o, 1 )-category of colimit preserving functors from C to D.

We will regard Pr" with the symmetric closed monoidal structure presented in | , Section 4.8]. The
tensor product of two presentable (co, 1)-categories C and D is the universal target of a functor € x D —
C ® D which preserves colimits separately in each variable. The monoidal unit of this symmetric (oo, 1)-
category is given by the (00, 1)-category of spaces. We will denote it by Spc.

We will denote by Pr>® the (oo, 1)-category of compactly generated, presentable (oo, 1)-categories and
colimit-preserving functors which preserve compact objects. Finally we will also denote by Pri>® C Prk
the full subcategory spanned by the compactly generated stable and presentable stable (oo, 1)-categories.

Rings, Modules and Derived Categories. Given a commutative unitary ring A we will denote by Mod s
the 1-category of A-modules, and by Moda the derived stable (oo, 1)-category of A-modules. We will
also the same notation if A is a derived ring or an [E,-ring spectrum. We will denote by Perf(A) and by
Coh(A) € PCoh(A) the full subcategories of compact (that is, perefect) objects and coherent and pseudo-
coherent objects.

If X is a scheme, stack or spectral Deligne-Mumford stack, we will denote by QCoh(X) the derived stable
(00, 1)-category of quasi-coherent sheaves on X, and by QCoh(X)? the corresponding abelian 1-category.
We will also denote by Perf(X) the full subcategory spanned by the compact objects (notice that, in the case
where X is a stack or a spectral Deligne-Mumford stack, compact objects and perfect objects coincide only
if X is perfect). We will also denote by Coh(X) C PCoh(X) the full subcategory of coherent and pseudo-
coherent objects.

1 Geometric (oo, 1)-Categories

The goal of this chapter is to introduce the basic language necessary to formulate Neeman's dualities.
We begin in Section 1.1 by reviewing the theory of stable homotopy theories and rigidly-compactly generated
(00, 1)-categories, which we will refer to as geometric (oo, 1)-categories for brevity. These (oo, 1)-categories are
characterized by being compactly generated by the dualizable objects. This simple requirement has numer-
ous implications. For example, every geometric functor f* : B — C, that is, every colimit-preserving and
symmetric monoidal functor between geometric (oo, 1)-categories, possesses a right adjoint f., which itself
possesses a right adjoint f(!). Moreover, these functors are related by a projection formula and a set of internal
realizations, which we will prove in Proposition 1.1.9. However, the main result of this section (proved by
Balmer, Dell’Ambrogio, and Sanders) is Theorem 1.1.11, an abstract formulation of Grothendieck-Neeman
duality.

In Section 1.2, we incorporate the input of a t-structure. We focus on two types of t-structures: geometric
t-structures and tensor t-structures, as well as their combination. Tensor t-structures are those for which
the 0-connective objects inherit the structure of a symmetric monoidal (oo, 1)-category, while geometric
t-structures are defined as accessible t-structures that are compatible with filtered colimits and right com-
plete. We will also introduce the concepts of t-geometric (oo, 1)-categories and t-geometric functors by adding
a geometric tensor t-structure to geometric categories and functors.

With the added datum of a (geometric tensor) t-structure on a geometric (oo, 1)-category, we will intro-
duce in Section 1.3 the third notion of finiteness appearing in Neeman’s dualities. We have two choices.

(1) We can consider Lurie’s almost perfect objects and bounded almost perfect objects, Coh(C) C PCoh(C).
(2) Alternatively, we can consider Neeman's pseudo-compact and bounded pseudo-compact objects, C2 C €.

We will work with Lurie’s almost perfect objects, which we call pseudo-coherent objects. If C is a com-
pactly generated (oo, 1)-category equipped with a t-structure, then the collection of pseudo-coherent objects
PCoh(€) defines a full stable subcategory. Moreover, we will show that connective pseudo-coherent objects
are closed under geometric realizations of simplicial objects, a result that will be crucial in the following.
Finally, we will study the interaction between compact and pseudo-coherent objects.

13



However, it is not immediately clear how to compute pseudo-coherent objects explicitly. In Theo-
rem 1.4.12, we will show that under mild assumptions on €, an object x € C is pseudo-coherent if and
only if each homotopy group 7, (x) is a compact object in €%, and 7, (x) = 0 for n < 0. These mild
assumptions on € will serve as the starting point for Section 1.4. These assumptions boil down to two
obstructions. The first obstruction concerns the compact objects in the heart. Since we naively expect the
heart PCoh(€)¥ to span the subcategory of compact objects in €V, we require the latter to be an abelian
subcategory. This occurs if and only if CV is a locally coherent abelian 1-category. The second obstruction is
more technical. If C possesses a compact generator G and the t-structure is in the preferred equivalence
class, then up to shifting, we may assume the heart €V to be compactly generated by 7o (G). However, the
projection 7o : € — C¥ destroys all the relevant information on the higher homotopy groups 7, (G), which
are essential for lifting arguments from €% to C.

Lastly, in Section 1.5, we will compare our pseudo-coherent objects with Neeman’s pseudo-compact ob-
jects. The main result is Proposition 1.5.7, which shows that if C is equipped with a single compact generator
G € C. such that there exists an integer N > 0 for which G is (—N)-connective and 1o Home(G,C>n) =0,
then pseudo-coherent objects and Neeman’s pseudo-compact objects coincide when computed in the pre-
ferred equivalence class.

1.1 Definition and Basic Properties

Lurie [ , Section 4.8.2] showed that the (0o, 1)-category of stable presentable (co, 1)-categories Prk is
equipped with a symmetric monoidal structure obtained by localizing Pr" at the idempotent object (Sp, $)
given by the (o0, 1)-category of spectra Sp and the sphere spectrum $ € Sp. We are interested in commuta-
tive algebra object therein.

Definition 1.1.1. A stable homotopy theory is a commutative algebra object in Prk.

Explicitly, a stable homotopy theory is a presentable stable (oo, 1)-category € equipped with a symmetric
monoidal structure (€, ®¢, L¢). Here the tensor product is required to be an exact functor commuting with
small colimits in both arguments. The definition has two immediate consequences.

(1) First of all, since for every object x € € the functor x ®e — : € — C preserve all colimits, the adjoint
functor theorem [ , Corollary 5.5.2.9] implies the existence of an adjunction

XQe—
o
¢ 1 C.
K__~
Hom,, (x,—)

Moreover, a simple computation with adjoints shows that Home(x, —) as the expected functoriality
in x, thus giving a functor Hom, : C°P x € — €. We will call it internal hom functor.

(2) Secondly, there exists a unique colimit preserving symmetric monoidal functor H : Sp — €. This
follows from the construction of the symmetric monoidal structure on PrsLt, which exhibits the (oo, 1)-
category of spectra, equipped with the smash product of spectra, as the initial stable and presentable
(o0, 1)-category equipped with a symmetric monoidal structure. The adjoint functor theorem pro-

duces a right adjoint I'(C, —) : € — Sp, which we call global sections of C.
Having said that, the input of a symmetric monoidal structure on a stable and presentable (oo, T)-category
is what allows us introduce a new notion of “finite” object. Given a stable homotopy theory C, we can
define a small subcategory Cgya1 of dualizable objects in €. Recall that an object x in a symmetric monoidal
(00, 1)-category C is dualizable if there exists an object x¥ and maps c : 1¢ — x¥ ®c x and e : x ®e XV — lg,
called the coevaluation and evalutation, such that the composites

id«®c e®id c®id idyv®e
X~ x®e leg ——5 x Qe X¥ Qe X —— X, x¥ ~ le Qe x¥ — 5 x¥ Qe X Qe XV ——Ty xV

are equivalent to the respective identities. Equivalently, an object x € € is dualizable if and only if there
is an object xV such that x¥ ®e — 1 x ®e — are adjoint functors ¢ — €. We will denote by C4ya the full
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subcategory of C spanned by the dualizable objects in €. By [ , Theorem A.2.5], this subcategory is
idempotent-complete and closed under the monoidal product. Furthermore, Cq,, is also stable, being € a
stable homotopy theory,.

Remark 1.1.2. Let C be a stable homotopy theory. Taking compact and dualizable objects produces two
idempotent-complete stable (oo, 1)-categories C. and Cqya. In general, these two categories do not share
any relations. However, if the monoidal unit is compact, then dualizable objects always form a subcategory
of compact objects. The reason is simple. Indeed, if x € € is dualizable, then we have equivalence

Home(y,z ®c x) ~ Home(y ®c x¥, 2)

for every y,z € C. By taking y = 1¢ we see that the compactness of the monoidal unit forces the dual x”
to be compact as well, hence x to be compact. In contrast, no level of compactness is enough to guarantee
dualizability.

For this reason, we select a particular class of stable homotopy theories.

Definition 1.1.3. A geometric (oo, 1)-category is a compactly generated stable (oo, 1)-category € equipped
with a symmetric monoidal structure (€, ®¢, Le), (:ompatible]O with colimits, such that the compact objects
coincide with the dualizable objects.

Several names appear in the literature. Classically, geometric (oo, 1)-categories appear in [ , Def-
inition 1.1.4] under the name unital algebraic stable homotopy categories. More recently, they have also been
called rigidly-compactly generated categories. We have preferred a more concise definition. For an (oo, 1)-
category, being geometric should reminds us that it arises as the standard “big” tensor-stable (oo, 1)-category
of common use, regardless if it comes from algebra, geometry or homotopy theory.

Remark 1.1.4. There are two major consequences of the Definition 1.1.3. Let € be a geometric (oo, 1)-
category.
(1) Since compact objects coincide with the dualizable ones, every x € € determines a canonical equiva-
lence Hom (x, —) >~ x¥ ®e — of functors € — C. In particular, Hom(x, —) preserves all small colimits
and x¥ ®e — preserves all small limits.

(2) Consider the full subcategory of compact-dualizable objects €. = Cqua. This subcategory admits a
canonical duality Ae = Home(—, 1e) : (€)% — €, satisfying A2 ~ ide.

The above duality is natural in €, under geometric functors, introduced in [ , Definition 3.4.1].

Definition 1.1.5. Let f* : B — €be a functor between geometric (oo, 1)-categories. We say that f* is geometric
if it is colimit preserving and symmetric monoidal.

Remark 1.1.6. By applying the adjoint functor theorem, [ , Corollary 5.5.2.9] to the colimit preserving
functor f* : B — € we get a right adjoint f, : € — B. We call f, the pushfoward along f, even if f does not
quite have a meaning.

Remark 1.1.7. Let f* : B — € be a symmetric monoidal functor between geometric (oo, 1)-categories.
Then f* preserves compact objects, since they coincide with the rigid objects, and f* preserve them, being
symmetric monoidal.

Lemma 1.1.8. Let F 4 G : B — € be an adjoint pair of functors between (oo, 1)-categories. Assume that B is
compactly generated. Then the following are equivalent.
(1) The functor F preserves compact objects.

(2) The functor G preserves filtered colimits.

101n Section 2.1 we will show that Prip® carries a symmetric monoidal structure. This will imply that geometric (oo, 1)-categories
can be identified with particular algebra objects therein.
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Proof. Assume that F preserves compact objects and let us prove that G preserves filtered colimits. Let
I —» G,i — c; be a filtered diagram in €. We want to show that the canonical map colimic; G(ci) —
G(colimicr ci) is an equivalence in B. By Yoneda, it suffices to check that it induces an equivalence

Homg (b, colimic1 G(c¢i)) — Homsp (b, G(colimier ci))

in Spc for every b € B. However, being B compactly generated, every element is a colimit of compact
objects, so that we can assume b € B.. But then

Homg (b, colimicr G(cyi)) ~ colimie; Homg (b, G(cyi))
~ colim;c;1 Home (F(b), ¢y

~ Home (F(b), colimicr i

—_— — —

).

Here the first equivalence follows by the compactness of b € B, the second one by the adjunction F 4 G,
the third one by assumption (1), the fourth one again by adjunction F 4 G. This proves (1) = (2). For
(2) = (1), assume that G preserves filtered colimits, and consider a compact object b € B.. Given a filtered
diagram I — €,1 — c; in € we compute

~ Homg (b, G(colimicy ¢y

Home (F(b), colimic ¢i) ~ Homg (b, G(colimicy ¢i))

)
))
)
i)

~ Hom (b, colimic1 G(c;

)

~ colimic1 Homg (b, G(c;
~ colimic1 Home (F(b), ¢

Here the first equivalence follows by adjunction F 4 G, the second one by assumption (2), the third one
by compactness of b € B, and the fourth one again by adjunction F 4 G. In particular, there is no need to
assume B compactly generated. O

Let f* : B — € be a geometric functor. Since Remark 1.1.6 provides us a right adjoint f, : € — B, we can
apply Lemma 1.1.8 to discover that f, must preserve filtered colimits. Since the pushfoward f, is a limit
preserving functor (in particular, it is exact) and preserves filtered colimits, it must preserve all colimits. By
applying the adjoint functor theorem [ , Corollary 5.5.2.9], we discover that it fits into adjunctions

£* fa
o
B 1L € 1L B.
K__~ KR ~
fa £(1)

This follows by the basic formalism. Following [ ], we will call f(1) the twisted inverse image functor. In
loc. the notation f* is used; we disregard this choice in order to prefer the notation proposed in [ ,
Remark 1.11]. The following result (which the reader can find in [ , Proposition 2.15]) shows that the
three functors f* 4 f, 4 f1) automatically satisfy some basic formulas.

Proposition 1.1.9 (The Projection Formula). Let f*: B — C be a geometric functor. Then there is a canonical
natural equivalence
f(x) @3y = fulx @e F(y)) @

forall x € € and y € B obtained by f*(f.(x) ®35 y) ~ f*(f.(x)) ®e f*(y) — x ®c *(y) by adjunction. We
also have three further canonical equivalences:

(1) Homgy (y, fi(x)) ~ f.Home (f*(y),x) forally € B and x € C.
(2) Homy (f.(x),y) =~ f.Home(x, f1)(y)) forally € B and x € €.
(3) fHomg (y,y') =~ Home (f*(y), {1 (y’)) for all y,y’ € B.

Equation 2 is called the projection formula, whereas the other equations appearing in the statement are called
internal realizations.
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Proof. The map f.(x) @3y — f.(x®e f*(y)) is well-defined for all y and x, and it is automatically invertible
whenever y is dualizable. By fixing an arbitrary x € C, we see that both sides of equation of the previous
equation are exact and respect the colimits in the y-variable. Since B is generated by its compact (that is, by
the rigid) objects, it follows that f.(x) @8 y — f.(x ®e f*(y)) is an equivalence for every y € B.

By taking adjoints, we now derive the second and the third internal realizations. First, by fixing y, we
obtain the composite adjunctions

Yy @5 f.(—) 4 f U Homg (y,—),  f.(f'(y) ®e —) 4 Home(f*(y), f) (—)).

However, since the projection formula amounts to an equivalence of left adjoints, the uniqueness of right
adjoints implies equivalence on the right adjoints as well, yielding the last internal realization. The natu-
rality in y follows from the fact that the adjunctions above form natural families parametrized by y. Next,
fixing x instead leads to

(—) @3 fo(x) 4 Homy (fo(x), =),  fiu(f*(—) ®e x) + f.Home (x, f")(—)),

from which we can derive the second internal realization. Finally, by fixing y in the equivalence f*(y) ®e¢
*(x) ~ f*(y ®3 x), which arises from the monoidal structure of f*, we deduce that

(y) @e (=) 4 f.Home (" (y), =),  f(y @3 —) 4 Homg (y, f. (=),
which gives the remaining internal realization. O

We conclude this section by discussing the behaviour of compact objects under f, (and thus explaining
the terminology behind (). But first, we need a technical result.

Lemma 1.1.10. Let F 4 G : B — € be an adjoint pair of exact functors between stable (oo, 1)-categories.
Assume that B is compactly generated and that F preserves compact objects.

(1) If the restriction F|lg, : B, — C. has a right adjoint Gy, then G preserves compact objects and Gle, ~
Go.

(2) If the restriction Flg, : B, — C. admits a left adjoint Ey and if C is compactly generated, then F
preserves limits.

Proof. Let us prove (1). First of all, our assumption tells us that for every compact object x € B, and every
compacty € C., we have a natural equivalences

Home(y, Go(x)) ~ Homs (Fiz, (y),x) = Homs (F(y), x) ~ Home (y, G(x)).

We now apply this chain of equivalences to y := Go(x), so that the identity map of Go(x) induces a mor-
phism v« : Go(x) — G(x). By letting x € B varying, the naturality of the above equivalence induces a
natural transformation vy : Go — G|z. However, the naturality in y implies that the above chain of equiva-
lences is obtained by composing maps f € Home(y, Go(x)) with yx. In particular, for any fixed x € B, the
induced map Home (—,vx) : Home(—, Go(x)) — Home(—, G(x)) is invertible on all y € € by construction.
Now, being C is compactly generated, it follows that Home(—, v«) is invertible on all y € €. In particular,
Yoneda lemma implies that v, is an equivalence, thus showing the claim.

Let us now prove (2). Let us denote by n : id¢, — F o E the unit of the adjunction Ey 4 F. Consider
the map o s : Home(x, F(y)) — Homp(Eo(x),y) defined for x € C. compact and y € B By adjunction,
this morphism is an isomorphism when y € B. is compact. Since both functors Hompg(E¢(x),—) and
Hom¢ (x, F(—)) are homological functors from B — Mod% and preserve colimits. This follows because F
preserves colimits (as it has a right adjoint), and both x and Eq(x) are compact objects. Now «,  is an
equivalence for every x € C. and every y € B. This kind of partial adjoint suffices to show that F preserves
limits, as usual. O

We can now prove the main result of this section.
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Theorem 1.1.11 (Abstract Grothendieck-Neeman Duality). Let f* : B — € be a geometric functor. Then the
following are equivalent.

(1) The functor f* has a left adjoint f (1.
(2) The functor f, preserves compact objects.

In this case, we have five adjoints (7, - f* - f. = (') 4 f_;, and the Grothendieck-Neeman duality equiva-
lence
(=) = wr @e ()

where w¢ = f(1)(13) is the dualizing complex of f.

Proof. Assume first that the functor f* has a left adjoint f(;). By assumption, f* preserves all colimits, hence
the left adjoint f;) must preserve compact objects by Lemma 1.1.8. Since f* is symmetric monoidal, the
adjunction f(;) 4 f* restricts to an adjunction

Since B and € are geometric, the compact objects of both coincide with the rigid objects, and hence duality
gives us equivalences Az : (B:)P — B and Ae : (C)°P — €. which are quasi-inverse to themselves. Since
f* preserves compact objects, we have a commutative square

(Bo)P 224 B,

el

(Cc)oP Te> Ce

In particular, the self-duality of Ag and Ae implies that the composite functor Ag o (f(7,)P 0 Ae : Cc — B,
is right adjoint to f* : B, — €. Point (1) of Lemma 1.1.10 applied to F := f* allows us to conclude that
the right adjoint f* must preserve compact objects. The other direction follows easily from point (2) of
Lemma 1.1.10 and Brown representability.

Assume now the equivalent conditions (1) and (2). By assumption we have adjunctions ;) 4 f* - f,
f(1). The existence of the last adjunction f(!) + f__, follows by Lemma 1.1.8: since f, preserves compact
objects, its right adjoint f(!) preserves filtered colimits, and the adjoint functor theorem does the rest. This
leaves us to show the Grothendieck duality equivalence. We will actually prove something stronger: given
x,y € B we will show the existence of a canonical equivalence (') (x) ®¢ f*(y) — f(')(x ®4 y). First of all,
we can construct the comparison map (" (x) ®¢ *(y) — f(')(x ®4 y) by using the counit ¢ : f,f1) — idg
of the adjunction f, = f(1), Indeed,

ex ®idy € Homg ((f.f"(x)) ®3 y,x @5 y)
~ Homs (. (") (x) ®¢ (), x @3 y)
~ Home (f'V) (x) ®e *(y), f") (x @3 y)).
Here the first equivalence follows from the projection formula and the second one from adjunction f, - f(1).
We need to show that this comparison map is an equivalence. Since both sides of the comparison map

f(x) @e f*(y) — f1)(x @3 y) are colimit-preserving exact functors in both variables, we can check that
it is an equivalence on compact objects. Assume that y € B, is compact, hence rigid, and that x € B is
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arbitrary. Since for every z € € post-composition with the comparison map induces equivalence

Home(z, ") (x) @c f*(y)) ~ Home (z @e Af*(y), {1 (x))
~ Home(z ®c f*A(y), ' (x))
~ Homg (f.(z ®e f*A(y)), x)
~ Homg (f.(z) ®c A(y),x)
~ Homs (f.(z),x @3 y)

D
Rl

1)

~ Hom@(z,f( (X (629072} U)),

Yoneda’s lemma allows us to conclude that the general comparison map is an equivalence whenever y is
rigid. Here the first equivalence follows since *(y) is rigid, the second one since f*A ~ Af* on rigids, the
third one by adjunction f. - f{1), the fourth one by the projection formula, the fifth one since y is rigid and
the last one again by adjunction f, - f(1). O

Remark 1.1.12. Let f* : B — € be a geometric functor and assume that Grothendieck duality holds. Then

(1) preserves colimits (since f* does). Lemma 1.1.8 implies then that its left adjoint f, preserves compact
objects. In particular, we deduce that Grothendieck duality is not only necessary for conditions (1) and (2)
of Theorem 1.1.11, but it is also sufficient!

Remark 1.1.13. We can now explain our choice of terminology and notation behind the functor f* = (1)
We call it twisted inverse image since, under one of the assumptions of Theorem 1.1.11, it can be computed
as by “twisting” f* by a dualizing complex w; € €. We denote it by fl!) since we take wy tensored with
itself just one time. Indeed, one can define the functors f("™) = W™ ®e f* and f () = f.(WF™ ®e —) for every
n € Z. Without further assumptions, these functors are unrelated. However, as soon as wy is a compact
object of €, they fit into adjunctions (™) 4 f(_ ) 4 f(n*1). See [ 1.

1.2 Geometric and Tensor t-Structures

In the previous section we have introduced two notion of finiteness by means of compact and dualizable
objects. To introduce the third notion we need the additional input of a t-structure.

Definition 1.2.1. Let C be a presentable'" stable (0o, 1)-category equipped with a t-structure (€>o, C<o). We
will say that the t-structure (C>o, C<o) is geometric if
(1) The t-structure is accessible'”
(2) The t-structure is compatible with filtered colimits. That is, C<( is closed under filtered colimits in C.
(3) The t-structure is right complete.
We will furthermore say that the t-structure is excellent if it is also left complete.

The following result explains the various assumptions in the definition of geometric t-structures.
Lemma 1.2.2. Suppose C is a presentable stable (0o, 1)-category with accessible t-structure. Then the fol-
lowing are equivalent.

(1) C<o is closed under filtered colimits in C.
(2) i<o : C<o — € preserves filtered colimits.
(8) i<0T<0 : € — C preserves filtered colimits.
(4) i>0T>0 : € — C preserves filtered colimits.
(5) T>0:€ — C>p preserves filtered colimits.

These equivalent conditions imply the following.

HFor this definition to make sense we only need € to have filtered colimits.
12Recall that this means that the (oo, 1)-category C>o is presentable. See [ , Proposition 1.4.4.13] for some equivalent condi-
tions.
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(6) i>0: C>p — C preserves compact objects.
(7) T<0: € — C<o preserves compact objects.
Furthermore,

(a) If € is compactly-generated, then so is C<o (with compact objects retracts of objects of the form T<oc
for ¢ € C.). In this case, the above conditions are equivalent to T<(o preserving compact objects.

(b) If € and C>( are compactly-generated, then the above conditions are equivalent to i preserving
compact objects.

Proof. The equivalence (1) & (2) is by definition. The implication (2) = (3) follows since T<o is a left
adjoint whereas the converse (3) = (2) follows since the t-structure is accessible. A similar argument
(coupled with the fact that also C>¢ is presentable) shows the equivalence (4) & (5). To conclude, let us
note that (2) & (5) follows by considering the cofibre sequence of functors T>o — id — T<_1 ~ £ 't
on C. Assume now the equivalent conditions (1)-(5). Direction (=) of Lemma 1.1.8 shows that (2) implies
(7) and that (5) implies (6). This leaves us to prove the “furthermore” part. Point (a) follows since a left
localization of a compactly generated (oo, 1)-category is again compactly generated; see [ , Corollary
5.5.7.3]. For (b), if € and C>¢ are compactly generated, then Lemma 1.1.8 shows that (6) implies (5). O

We can also add the datum of a symmetric monoidal structure.

Definition 1.2.3. Let C be a stable and symmetric monoidal (oo, 1)-category equipped with a t-structure
(C>0,C<0). We will say that the (C>0,C<o) is a tensor t-structure if the connective objects C> inherits the
symmetric monoidal structure of C. If € is furthermore presentable, then we will say that (C>0,C<o) is a
geometric tensor t-structure if it is a geometric and tensor t-structure. We give a similar definition for excellent
tensor t-structures.

More explicitly, for a stable symmetric monoidal (oo, 1)-category € with tensor product ®e and unit 1¢,
a tensor t-structure is a t-structure (€, C<o) such that ®e restricts to a functor —®e —: >0 x C>0 — C>o
and 1¢ € C>o. In particular, the inclusion functor i>¢ : €>0 — € is symmetric monoidal.

Let us note that the definition of tensor t-structure is rather awkward. Indeed, it gives to the O-connective
aisle a special role among all connective aisles. To explain the problem, we need equivalent t-structures.

Definition 1.2.4. Let C be a stable (oo, 1)-category equipped with a pair of t-structures ((?120, e]go) and
(@220, GZSO). We will say that the t-structures are equivalent if there exists an integer A > 0 such that (‘312 A C
CLoC el A

Remark 1.2.5. The previous definition can be stated also in terms of the coconnective aisle. Indeed, since
the 0-connective and 0-coconnective aisles of a t-structure completely determine each other, it follows that
two t-structures (CL,, L) and (€2, C2,) are equivalent if and only if there exists an integer A > 0 such

thatCl , cez,cel,.

The notion of equivalence for t-structure is close to be an equivalence relation on the set of t-structures
on a stable (oo, 1)-category. However, as simple as it may seem, this is not the case: the collection of t-
structures does not form a set. Nonetheless, to capture the geometry of a stable (oo, 1)-category we should
always use constructions which only depend on the “equivalence class” of the t-structure. We have already
encountered examples of such constructions, since the full subcategories ¢, € and €° are do not feel
equivalent t-structures.

Remark 1.2.6. Let C be a stable (oo, 1)-category equipped with a t-structure (€0, C<o). Then equivalent t-
structures do not share the same categorical properties of (C>0, C<¢). For example, if (C>0, C<o) is accessible
(or compatible with filtered colimits) then an equivalent t-structure need not to be accessible (or compatible
with filtered colimits).

Standing to the above principle, it is clear that the notion of tensor t-structure is not stable under equiva-

lence. For this reason, it is convenient to fix a tensor t-structure (C>0, C<¢) and work with those t-structures
whose 0-connective aisle is closed under tensoring with €.
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Remark 1.2.7. Let us recall some terminology. Keller and Vossieck in [ ] observed that it is possible
to characterize the connective objects of a t-structure in terms of certain subcategories. Let € be a stable
(00, 1)-category. First of all, recall that a full subcategory U C C is called a preaisle of C if

(1) Wis closed under positive shifts, that is ZU C U.

(2) Uis closed under extensions, that is, given a cofibre sequence x — y — z in € with x, z € U, then also
y el

Given a preaisle U we will denote by U the right orthogonal of U, that this the full subcategory of C
spanned by those y € € such that Home(x,y) =~ 0 for all x € U. Finally, we will say that a preaisle U of Cis
an aisle if

(3) The inclusion i<y : U — € admits a left adjoint T<y. We call this functor the truncation functor
associated to U.

Keller and Vossieck proved in [ , Proposition 1.1] that the assignments (C>0,C<o) — €50 and U —
(U, ZUL) realize a correspondence between the aisles of € and the t-structures on €, thus giving equivalent
approach to the theory of t-structures.

Remark 1.2.8. The aisle-point of view has an advantage: it allows us to construct t-structures in reasonable
stable (oo, 1)-categories. Let C be a stable (oo, 1)-category with small colimits. Recall that a thick subcat-
egory is a localizing subcategory if it is closed under small colimits in €. Given a class of objects S C C,
recall that (S) denotes the smallest localizing subcategory of € containing S; similarly, we denote by (S)>o
the smallest cocomplete preaisle containing S and call it the cocomplete preaisle generated by S. In particular,
we will say that a preaisle U is compactly generated if there exists a set of compact objects S C €. such that
U = (S)>0. We then extend this definition to aisle and t-structures by requiring the underlying preaisle to
be compactly generated. The result to keep in mind is [ , Theorem A.7]. Keller and Nicolds showed
that, if C has small colimits, then the preaisle (S)>( associated to a set of compact objects S is actually an
aisle, and hence the associated t-structure (U, ZU') is compactly generated.

We can now formulate a refinement of Definition 1.2.1.

Definition 1.2.9. Let C be a stable and symmetric monoidal (oo, T)-category equipped with a tensor t-
structure (C>0, C<o). We will say that a preaisle U of C is a ®@¢-preaisle with respect to C>¢ if C>o ®e U C U.
We then extend this definition to aisles. In particular, a t-structure (U, ZU") is a tensor t-structure with
respect to € if the aisle U is a ®¢-aisle with respect to €. We use all the other adjectives with the obvious
meaning.

Our next goal is to show that geometric (oo, 1)-categories have a sensible theory of tensor t-structures.

Proposition 1.2.10. Let C be a stable homotopy theory equipped with a tensor t-structure (€, C<o) (in
the sense of Definition 1.2.1). If €>¢ = (le)>o then every cocomplete preaisle of C is a ®e-preaisle. In
particular, every t-structure whose aisle is cocomplete is a tensor t-structures with respect to C>.

Proof. First of all, let us clarify that we are not assuming the monoidal unit 1¢ to be compact. We are instead
assuming that we are provided with a tensor t-structure whose connective aisle is generated by 1. Now
the proposition is a consequence of the following claim.

(*) Assume that C> is generated by a set of objects S, that is, €>¢ = (S)>o. Then a cocomplete preaisle U
of € is a ®e-preaisle with respect to > if and only if S ®e U C U.

Since the “only if” direction is immediate, let us prove the “if” direction. Assume that S ®e U C U and
consider the full subcategory U’ of € spanned by those x € € such that x ®ec U C U. By assumption we have
that S C U’. Moreover, since U is a preaisle, it follows that U’ is closed under positive shifts and extensions
(here we are using that € is a stable homotopy theory). Since U is cocomplete, it follows that also U’ is, thus
showing C>o ®c U C U. O

Corollary 1.2.11. Let C be a geometric (oo, 1)-category. Then:

(1) The monoidal unit determines a tensor t-structure (C>o, C<o) (in the sense of Definition 1.2.1) such
that!® 620 = <]1€>20'

13We stress that this t-structure in not geometric, since it is not right complete.
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(2) Every t-structure with cocomplete aisle is a tensor t-structure with respect to C>o.

Proof. Since C is geometric, the monoidal unit is compact. Hence [ , Theorem A.7] shows that (1¢) is
the aisle of a t-structure (C>o, C<¢). Since ®¢ is exact and commutes with small colimits in both arguments,
it follows that (C>0,C<o) is a tensor t-structure. This proves (1). For (2), Proposition 1.2.10 shows that
every t-structure with cocomplete aisle is tensor with respect to C>. O

Let € be a geometric (oo, 1)-category and let (C>o, C<o) denote the tensor t-structure generated by the
monoidal unit. We will refer to (>0, C<o) as the standard t-structure. Standing to our discussion On Finite-
ness, we regard the standard t-structure as a trivial geometry. Non-trivial geometries may be obtained in
presence of compact generators.

Lemma 1.2.12. Let € be a presentable stable (oo, 1)-category, and let Let G be a collection of compact objects
of C that generates'* €. Then there exists a geometric t-structure (€0, €<o) such that:

(1) The coconnective objects are given by C<o = {x € €|m, Home(g,x) =0 forall g € §,n > 0}.

(2) Let € be the smallest full subcategory which contains § and is closed under finite colimits and exten-
sions. Then the inclusion £ — € extends to an equivalence of (oo, 1)-categories Ind(€) — C>o.

Proof. First of all, given C<¢ as in (1), [ , Proposition 1.4.4.11] implies the existence of t-structure
(C>0,C<0). Moreover, since § consists of compact objects it follows that the full subcategory C<o C €
is closed under filtered colimits. Since it is also closed under coproducts, [ , Proposition 1.2.1.19] tells
us that (C>0, C<o) is right complete (and hence geometric) if and only if Un>0C<_n =~ 0 consists of zero
objects. Now if x € C<_,, for every n > 0, then mo Home(Z™g,x) = O for every n € Z and g € §, thus
implying that x ~ 0.

We are left to prove (2). First of all, since the compact objects of € are closed under finite colimits and
extensions, every object of € is compact in C. Secondly, the full subcategory C>o C € is also closed under
finite colimits and extensions and therefore contains €. It follows that every object of € is compact when
viewed as an object of C>, so the inclusion € — €>¢ extends to a fully faithful embedding 6 : Ind(€) — €C>¢
which commutes with small colimits. We wish to show that the essential image of 8, say C’, is actually
€’ = Cxy, thatis, C>¢ C €’. Since the proof of [ , Proposition 1.4.4.11] shows that C>¢ is the smallest
full subcategory of € which contains § and is closed under small colimits and extensions, it will suffice to
show that the €’ is closed under extensions in C. Suppose we are given a fiber sequence x — y — z where
x,z € C'. We wish to prove thaty € €’. Now z can be written as a filtered colimit colim;¢; zi, where z; € €
for every i € I. In particular, it follows that y can be written as a filtered colimit of objects of the form y x z;.
Since €' is closed under filtered colimits in C, it will suffice to show that each of the y x z;’s belongs to C’.
Replacing z by z;, we may reduce to the case where z; € €. In this case, we can realize y as the fiber of a
map f : z — Zx. By writing x as a filtered colimit colim;i¢1 x; with x; € &, the compactness of z in € implies
that f factors through Zx; for some index i € I. We may therefore write y as a filtered colimit of objects of
the form fib(z — Zx;), which are extensions of objects of € and therefore belong to €. O

To go back to the discussion, assume now that the geometric (oo, 1)-category € is compactly generated
by a single compact object G € C.. The above lemma implies then the existence of a geometric t-structure
(€€,, CS,). We will refer to the class determined by this t-structure as the preferred equivalence class. Notice
that this equivalence class is well defined (see for example [ , Example 0.13]). Corollary 1.2.11 implies
now that (Ggo, GSO) is a tensor t-structure with respect to C>o. If now G € €>_n is (—N)-connective for
some integer N > 0, it follows that the the standard t-structure is in the preferred equivalence class:

C>n C GSO CC>_nN-

Indeed, the inclusion C$, C €>_n follows since the latter contains G and both categories are closed under
colimits and extension; the first inclusion € >N C €8, follows since G is a compact generator: it implies that
the monoidal unit is (—n)-connective T¢ € €S, and after a change of index (if necessary), it implies the
required inclusion. In particular, we have the following result.

14That is, for every nonzero object x € C there exists g € §and n € 7Z for which the graded abelian group mo Home(Z™g,x) is
nonzero.
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Corollary 1.2.13. Let € be a geometric (oo, 1)-category equipped with a compact generator G € C. and let
(GSO, C go) be the t-structure generated by G. Assume that G is (—N)-connective for N € N in the standard

t-structure. Then @SO ®e Ggo C (‘BS_N.
Proof. We have
CSo ®e €Sy C €S) ®e C>—n = €Sy ®e (£ NEx0) = MN(CE, ®e €50) C I NCE, =CS .

Here the first inclusion (or equality) follows since G is (—N)-connective, the second equality is by definition,
the third one since ®¢ is an exact functor, the fourth inclusion by Corollary 1.2.11 and the last equality by
definition. 0

Lemma 1.2.14. Let C be a geometric (oo, 1)-category equipped with a compact generator G € C. such that
7o Home (G, £'G) = 0 for i >> 0. Then every t-structure in the preferred equivalence class is left and right
complete.

Proof. Since being left and right complete is clearly preserved by equivalent t-structures, we can prove
the claim by choosing any t-structure in the preferred equivalence class. We choose the t-structure of
Lemma 1.2.12 since we already know that it is right complete. To show that it is left complete we can apply
[ , Proposition 1.2.1.19] and show that N,~.0C>n >~ 0. Let x € € be non zero so that there exists a non
zero morphism ™G — x for some n € Z. In particular, x does not belong to €<, _7. Now our assumption
ensures that there exists N > 0 such that 1o Home (G, C>n) = 0. In particular, 1o Home (X" G, C>nin) =0,
and we deduce that x does not belong to C>n4n. By increasing N we deduce that x does not belong to
Mn>o0 Con. O

The next result analyses the interaction between internal homs and the tensor t-structures.

Lemma 1.2.15. Let C be a stable homotopy theory equipped with a tensor t-structure (C>o,C<¢) (in the
sense of Definition 1.2.1), and let (U, ZU") be a t-structure. Then the following are equivalent:

(1) (U, ZU™t) is a tensor t-structure with respect to C>o.

(2) Uis a ®c-aisle with respect to €>o.

(3) We have Hom, (€5, Ut) C UL.

Proof. First of all, the equivalence (1) & (2) is by definition. The equivalence (2) & (3) follows instead from
the equivalence Home (x ®¢ z,Yy) ~ Home(z, Hom (x,y)) valid for every x € €so,y € Ut andze U. [

We conclude this section by adding to geometric (oo, 1)-categories and functors the input of a geometric
tensor t-structure.

Definition 1.2.16. Let C be a geometric (oo, 1)-category. We will say that € is a t-geometric (oo, 1)-category
if it is equipped with a geometric tensor t-structure. Similarly, a geometric functor f* : B — € between
t-geometric (oo, 1)-categories is called t-geometric if it is right t-exact.

To be precise, a geometric functor f* : B — € is t-geometric if f*(B>o) C C>o, or equivalently f,(C<o) C
B<o. Our interest in t-geometric functors lies in their behaviour at the level of the hearts.

Remark 1.2.17. Let f* : B — C be a geometric functor and let f, : ¢ — B denote its right adjoint. Let
ig 1 BY < B and ie : €Y < @ be the inclusions of the heart. We denote by Pf* and Pf, the compositions

* Q is * TS o0 P Qo ie fa WP
Pfr.BY =B —C—>C, f.:0¥ —5€C-5B—3B
and call them the induced functors of f* - f,..

Lemma 1.2.18. Let f* : B — C be a functor between stable (oo, 1)-categories equipped with t-structures.
Assume that f* is left t-exact and that is has a right adjoint f.. Then
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(1) Givenx € B>o and y € C<y, there are a natural isomorphisms
Py x) = G (%), (Faly)) = PG (y)

in ¥ and BY, respectively.

(2) The adjunction f* - f, determines an adjunction P f* 4 Pf,.

Proof. We now prove (1). We only prove the first isomorphism, since the second one follows by duality.
Consider x € B> and consider the cofibre sequence t2;x — x — T2,x in B. Since x is O-connective, we
can identify t2,x with ©¥ (x). Apply f* to obtain the cofibre sequence *(t3,x) — *(x) — f* (mPx) in €.
Since f* is left t-exact, it preserves connective objects. In particular, the natural map f* (13 x) — ©§f*(x) has
to be an equivalence.

The proof of point (2) is a chain of equivalences. Take x € BY andy € €Y and compute

Homeo (P£*(x),y) = Homeo (7§ f*ig (x),y)
= Home (f*iz(x),ie(y))
= Homs (ig(x), fxic(y))
= Homgpo (x, 7 fuie(y)) = Homge (x, Pf.(y)).

Here the first equality is the definition of P f*, the second by our assumption (since f*(B>¢ C €>¢ and since

ie(y) is O-coconnective, the space of maps f*iz(x) — ie(y) is discrete by using the standard argument with

the cofibre sequence give by truncating), the third one by adjunction f* 4 f., and the fourth one again by
assumption (since f.(C<o) € B<o and since ig(x) € B>¢ is O-connective, the space of maps iz (x) — f.ic(y)

is discrete, again by the same argument above). The last equality is the definition of Pf,. O

1.3 Pseudo-Coherent and Coherent Objects

Let Cbe a presentable (oo, 1)-category. Recall that and object x € C is said to be almost compact if for every
integer n > 0 the truncation T<,x is a compact object of T<» €. Here 1<, € denotes the full subcategory of €
spanned by the n-truncated objects, that is, by those objects x € € such that the mapping space Home (y, x)
is n-truncated for all y € C.

Definition 1.3.1. Let C be a presentable stable (oo, 1)-category equipped with a geometric t-structure. An
object x € C is called:

(1) Pseudo-coherent if it is connective x € C>n and almost compact as an object of C>n;

(2) Coherent if pseudo-coherent and coconnective, that is x € C<n for some N € Z.

The nomenclature we have chosen here comes from algebraic geometry. Pseudo-coherent objects were
first introduced by Illusie in [ ] via a slightly different definition. There, pseudo-coherent complexes
on a scheme are defined as complexes which, locally, are (quasi-)isomorphic to bounded above complexes
which admit projective resolutions by finitely generated projectives. If the scheme appears to be noethe-
rian, then pseudo-coherent complexes are precisely the bounded-above complexes whose cohomology is
coherent. To see how our definition fits in this picture we need to wait Theorem 1.4.12 and Chapter 4.

We let Coh(€) € PCoh(€) denote the full subcategories of € spanned by the coherent and pseudo-
coherent objects, respectively.

Remark 1.3.2. Note that the definition of PCoh(C) and Coh(€) depends on the choice of a t-structure.
However, equivalent geometric t—structures lead to the same PCoh(C) and Coh(C).

The first result of this section shows some basic properties of these subcategories.

Lemma 1.3.3. Let C be a presentable stable (oo, 1)-category equipped with a geometric t-structure. Then
Coh(€) € PCoh(C€) are stable subcategories of C. Moreover, they are closed under retracts.
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Proof. To show that Coh(C) C PCoh(C) are stable subcategories of C it suffices to prove that they are closed
under finite colimits. This follows immediately since almost compact are closed under finite colimits (be-
cause compact obejcts are), together with the stability of connective and bounded objects. A similar argu-
ment shows also that Coh(€) C PCoh(€) are closed under retracts, since compact objects are. O

Remark 1.3.4. Let C be a presentable stable (oo, 1)-category equipped with a geometric t-structure. Then
Coh(€) € PCoh(C) are idempotent-complete.

Indeed, since Coh(€) C PCoh(C) are thick, their homotopy category are again thick. By [ , Lemma
1.2.4.6] we deduce that Coh(€) C PCoh(C) are idempotent-complete if and only if hCoh(€) C hPCoh(C€) are
Karoubian. However, a thick subcategory of a Karoubian triangulated category is Karoubian. We therefore
conclude by remembering that a triangulated category closed under countable direct sums is Karoubian
and noting that h€ is such an example.

Lemma 1.3.5. Let C be a presentable stable (oo, 1)-category equipped with a geometric t-structure. Then
the full subcategory PCoh(C) N €C>¢ C €is closed under the formation of geometric realization of simplicial
objects.

Proof. Let x be a simplicial object of 1<, (PCoh(€) N €>¢) such that each xy is a compact T<n (PCoh(€C) N
C>0). We wish to show that the geometric realization [x,| can be computed in 1< (PCoh(€) N C>¢) and that
it is preserved by the inclusion PCoh(C) N €>¢ C €. This follows from the fact that <, (PCoh(C) N €x¢) is
equivalent to an (n + 1)-category, so that the equivalence

Xe| ~ colim o X
‘ o| [k]€A§n+1 k

exhibits the geometric realization |x,| as a finite colimit, which is then preserved by the inclusion PCoh(€)N
C>o CC. O

We can also analyse the interaction between (pseudo)-coherent objects and compact objects.

Remark 1.3.6. Let C be a presentable stable (oo, 1)-category equipped with a geometric t-structure. Assume
that C has a single compact generator G.

(1) If G is connective, thatis G € C>_n for some integer N > 0, then €. C PCoh(C).
(2) If G is bounded, then €. C Coh(C).

Indeed, being the t-structure compatible with filtered colimits, Lemma 1.2.2 implies that each truncation
functor 1<, : € — C<y preserves compact objects, leaving us to prove that compact objects are bounded
below for point (1) and bounded for point (2). This follows by the a more general assertion regarding
thickness and €. Indeed, if €~ (respectively C*, respectively C) contains a compact generator G € C,,
then €~ (respectively €7, respectively €°) contains all of C..

In order to further analyse the structure of PCoh(€) and Coh(C) we need one more definition.

Definition 1.3.7. Let C be a stable symmetric monoidal (oo, 1)-category. A C.-submodule is a stable thick
subcategory €y C € closed under tensor product by compact objects. That is, ¢ ®e x € Cp for all x € Cp and
all compact ¢ € C..

Then we have the following.

Lemma 1.3.8. Let C be a geometric (oo, 1)-category equipped with a geometric tensor t-structure. Then
(1) Pseudo-coherent objects are closed under tensor product by pseudo-coherent.
(2) Coherent objects are closed under tensor product by coherent.
(3) Assume that €. C PCoh(€). Then Coh(€) C PCoh(@) are C.-submodules.

Proof. We begin with point (1). Let x,y € PCoh(€) be pseudo-coherent. Since € is compactly generated,

we can write them as filtered colimits of compact objects, say x ~ colimierx; and y ~ colimjeyyj for
xi,Yj € Cc. Being x and y pseudo-coherent, each truncation T<nx and tT<ny is a compact object of C<,.
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Since T<n commutes with filtered colimits, we get that T<nx and T<ny are filtered colimits of compact
objects of C<y,. This implies that T<,x and T<ny are retract of T<x; and T<,y; for some i € I and j € J.
Now the t-structure is a tensor t-structure, so that

TSTL(X Rey) ~ TSn(TSnX Qe TSny)-
In particular, T<n (x ®¢ y) is a retract of
T<n(T<nXi ®e T<nYj) = T<n (Xi @c Yj)-

But now xi,y; € C. are compact, so that, being € geometric, x; ®¢ y; is compact. Lemma 1.2.2 showed
that the truncation of compact objects is compact, thus proving that T<» (x ®¢ y) is compact, being a retract
of a compact object. We now conclude by noting that the tensor product of x € C>n and y € C>nm lies in
C>n ®e C>m € C>nm. Point (2) follows by a similar argument. The only new input here is that if x and
y are bounded above, say x € C<n and y € C<pm, then we can tensor the cofibre sequences 0 — x — T<nX
and 0 = y — T<my to get equivalence x ®e Y ~ T<nX ®e T<my. Since

X®eY X T<NX®e T<my = TSNM(TgNX ®e TSMU) = TgNM(X Qe U)

we are done. Point (3) is now a formal consequence of point (1) in the case of pseudo-coherent objects and
a special case of the above argument for coherent objects. O

Remark 1.3.9. We will use the previous lemma in the following situation. Let € be a geometric (oo, 1)-
category and consider the standard t-structure (C>o, C<o) introduced in Corollary 1.2.11. As we pointed
out, this t-structure is tensor but not geometric (since not right complete in general). Assume now that C
comes equipped with a compact generator G € €. with is (—N)-connective for some integer N > 0. In
this case the standard t-structure is in the preferred equivalence class. If now 7o Home(G, £"G) = 0 for"
n >> 0, then we can apply Lemma 1.2.14 and deduce that the standard t-structure is geometric. If we
compute now the (pseudo)-coherent objects defined by this t-structure, the previous lemma implies that
Coh(€) and PCoh(€) are C.-submodules.

1.4 Coherent (0o, 1)-Categories

Even if pseudo-coherent and coherent objects behaved well categorically, it is not entirely clear how to
compute them explicitly. The goal of this section is to fill this gap by showing that, under some coherentness
assumption, PCoh(€) can be computed in terms of the homotopy groups of the t-structure.

The starting point is quite simple. For a t-geometric (oo, 1)-category € we might naively expect the heart
PCoh(€)¥ to be equivalent to the full subcategory of C¥ spanned by the compact objects. However, it is not
clear that why the t-structure of € should restrict to pseudo-coherent objects and why PCoh(€)" should be
an abelian 1-category.

Remark 1.4.1. Abelian categories whose compact objects form an abelian subcategory have already been
studied in the literature. Popescu [ ] introduced locally coherent abelian 1-categories. These are com-
pactly generated Grothendieck abelian 1-category whose compact objects form an abelian category. Exam-
ples include modules over a coherent ring and quasi-coherent sheaves over a coherent scheme.

With locally coherent abelian 1-categories in our hand, we give the following.
Definition 1.4.2. Let C be a presentable stable (oo, 1)-category equipped with a compact generator G € C..
We will say that a geometric t-structure (C>o, C<o) is coherent if
(1) There exists an integer N > 0 such that the compact generator G € C>_y is (—N)-connective and
o HOl’ne(G, GZN ) =0.

(2) The t-structure is in the preferred equivalence class.

15Notice that this assumption is equivalent to 7o Home (G, €>n) = 0 for the (possible different) integer N > 0.
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(3) For every O-connective object x € C>o with m(x) € (€¥),, there exists a compact and connective
object p € € with a mp-epimorphism p — x such that 7, (p) € (€Y. is compact for every n € Z.

(4) The heart C¥ is a locally coherent abelian 1-category.

Before exploiting all the properties of coherent t-structures we point out a few discrepancies between
our definition and the one already available in the literature.

Warning 1.4.3. Our definition of coherent (oo, 1)-category is not the same of Ben-Zvi, Nadler and Preygel
[ , Definition 6.2.7]. Lemma 6.2.5 in loc. shows how to compute pseudo-coherent objects in terms of
their homotopy groups, proving the same statement of Theorem 1.4.12. The autoher believes that this claim
is actually false. Indeed, if R is a connective E-ring spectrum with 7y (R) coherent, then Mody, is coherent
in the sense of Definition 6.2.7. In particular, since R € (Modg). € PCoh(Modzx), Lemma 6.2.5 implies that
every 7 (R) is finitely presented as a 7o (R)-module. This is true if and only if R is coherent in the sense of
[ , Definition 7.2.4.16].

Warning 1.4.4. Lurie has a notion of coherent Grothendieck prestable (oo, 1)-categories, which the reader can
find in [ , Section C.6.5].

Remark 1.4.5. Let C be a weakly approximable stable (oo, 1)-category. Accordingly to [ , Proposition
2.4], the t-structure used to prove that € is weakly approximable must be in the same equivalence class of
the t-structure generated by G. In this case € is coherent if and only if conditions (3) and (4) are satisfied.

Remark 1.4.6. Let Cbe a presentable stable (oo, 1)-category equipped with a geometric t-structure. Assume
that € comes equipped with a compact generator G € C. such that 7, (G) € (V). is compact for every
n € Z. Since the full subcategory spanned by objects with compact homotopy groups is stable, thick and
contains the compact generator G, it follows that every compact object ¢ € C. has compact homotopy
groups 7, (c) € (€Y)e.

Lemma 1.4.7. Let C be a presentable stable (oo, 1)-category equipped with geometric t-structure. Then the
following conditions are equivalent.

(1) The t-structure on C restricts to one on PCoh(@).

(2) The inclusion i<p : C<o — €<7 preserves compact objects.

(3) Desuspending £~ ! : C<o — €<, preserves compact objects.

In this case Coh(€)¥ = PCoh(C)" = (€%).. Furthermore, conditions (1), (2) and (3) imply- and in case € is
right complete, are equivalent to-

(4) The subcategory of compact objects in the heart (C%). C €Y is abelian.

Proof. Webegin by proving (1) & (2). First of all, recall that the t-structure restricts to PCoh(C) if and only if
for every x € PCoh(€) the truncation T<nx € C<,, is again pseudo-coherent. Since T<m © T<n =~ T<min(n,m),
the claim then follows by noting that T<nx € €<y, is compact if and only if T<mx € C<m is compact for all
m < nand i<m : €< — C<n preserves compact objects for m > n. The equivalence (2) & (3) follows
instead from the fact that the two functors are equivalent once we remember that C<; = £~ €.

Assume now the equivalent conditions (1)-(2) and (3). First of all, note that the t-structure also restricts
to Coh(C), allowing us to consider the hearts Coh(C )% and PCoh(€)”. In particular, we have

Coh(€)¥ = Coh(€) N e, PCoh(€)Y = PCoh(€) N €Y.

This shows the equality Coh(€)¥ = PCoh(€)”. We now note that Coh(€)¥ = (€¥). by definition. In
particular, since the heart of a t-structure is always abelian, the above equalities allow us to prove (4).

If € is right complete, the compact objects of C< are bounded, giving the converse. O

In order to prove the main result of this section we need to recall some easy results.

Remark 1.4.8 ([ , Lemma 1.2]). Let € be a stable (oo, 1)-category and equipped with a t-structure. If
x € €~ and m(x) = 0 for 1 < i, then x € C>;. Indeed, since x belongs to €7, it belongs to some C>_,, for
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some n > 0. Thus the canonical map T>_nXx — x is an equivalence. Now, since 7;(x) = 0 for every 1 < i,
the cofibre sequence T>1+1 — Tix — £~ ' (x) informs us that, as long as 1 < i, the map T>141 — Tix is an
equivalence. The chain of equivalences T>ix — Ti_1X — - -+ = T>_nX — X shows then the claim.

Remark 1.4.9 ([ , Lemma 1.3]). Let C be a stable (oo, 1)-category and equipped with a t-structure.
Assume also that € is equipped with a generator G such that 1o Home (G, C>n) = 0 for some N € N. Then:

(1) Every object x € €~, with 7, (x) = 0 for all n € Z, must vanish.
(2) If f : x — y is a morphism in €~ such that 7, (f) is an isomorphism for every n € Z, then f is an
equivalence.

Indeed, x belongs to NC>1 by Remark 1.4.8, so that point (1) follows by noting that 1o Home(£'G,x) = 0
for all i € Z implies x = 0, being G a generator. Point (2) follows by applying (1) to the cofibre of f.

We can also prove a converse to Lemma 1.3.5.

Lemma 1.4.10. Let C be a presentable stable (oo, 1)-category equipped with geometric t-structure. Assume
that € comes equipped with a compact generator G € C. such that the t-structure is in the preferred equiv-
alence class and there exists an integer N > 0 such that

(1) Gis (—N)-connective, G € C>_n.
(2) Tt0 HOI’I‘I@(G, GZN) =0.

Let x € PCoh(€) N € be a connective pseudo-coherent object. Then x can be obtained as the geometric
realization of a simplicial object x, such that each x,, is a compact object.

Proof. We may assume that the given t-structure is the one generated by G. In particular, every com-
pact object is connective and Remark 1.3.6 implies that compact objects are pseudo-coherent. Moreover,
Lemma 1.2.2 implies that the heart €V is a compactly generated 1-category, with generator 7o G.

Standing to the (oo, 1)-Dold-Kan correspondence [ , Theorem 1.2.4.1 and Remark 1.2.4.3], it suffices
to show that x can be written as filtered colimit over a diagram

LDy ...

D(0)
where each X" cofib(fy,) is compact. We construct the sequence by induction; we agree by convention that
fo denotes the zero map 0 — D(0). Assume that we have constructed

D) 5 D(1) —--- = DMn) Lx

with D(i) in €. for 0 < i < n and fib(g) € €>,. Since x is pseudo-coherent, the fibre fib(g) is pseudo-
coherent. In particular, bottom homotopy group 7, fib(g) € (C%). is compact in the heart. Since € is
compactly generated by 7yG, we can pick a mp-epimorphism Z™Q — fib(g) where Q is compact and con-
nective. We now construct D(n + 1) as the cofibre

mQ fib(g) D(n)

I Jn-

0 —— fib(g)/D(n) —— D(n+1)

Since both £™Q and D(n) are compact, also D(n + 1) is compact. Moreover, cofib(f,, 1) ~ I"*1Q is a
compact object. Now the universal property of pushouts implies the existence of a unique g’ : D(n+1) — x
such that g >~ g’ofy 1. Since the octahedral axiom provides a cofibre sequence X™Q — fib(g) — fib(g’), the
long exact sequence of homotopy groups in C¥ implies that fib(g’) € €>n1. This concludes the inductive
construction. Since for fixed i the maps 7;D(n) — m;x are isomorphisms for n >> 0, we conclude that the
canonical map colim, D(n) — x is an equivalence by applying Remark 1.4.9. O

In order to prove the main result of this section we need some terminology.
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Remark 1.4.11 (Reminds on Grothendieck Abelian Categories). Abelian categories furnish different finite-
ness conditions, which are modelled on what happens in categories of modules. Let A be an abelian cate-
gory satisfying Grothendieck axiom AB5.

(1) An object x € A is called of finite type or also finitely generated if, for any filtered colimit colimier yi
of monomorphisms, the natural map colimie; Hom4 (x,yi) — Hom4(x, colimieryi) is an isomor-
phisms.

(2) An object x € A is called finitely presented if it is of finite type and for every epimorphism p : y — x
from an object of finite type the kernel ker(p) is also of finite type.

(3) An object x € A is called coherent if it is of finite type and for every morphism p : y — x from an object
of finite type the kernel ker(p) is also of finite type.

(4) An object x € A is called compact if it satisfies the usual definition, that is, Hom4(x, —) preserves
filtered colimits.

Clearly, every coherent object is finitely presented and every finitely presented object is always finitely
generated. If A is also Grothendieck abelian, then an object is compact if and only if it is finitely presented,
see [ , Proposition V.3.4]. The other missing implications require further assumptions on A. If A is
locally coherent, then every finitely presented object is coherent, implying equivalence between (2), (3) and
(4). If A is locally noetherian, then every finitely generated object is finitely presented, implying equivalence
between all the above assertions.

Then we have the following.

Theorem 1.4.12. Let C be a presentable stable (oo, 1)-category equipped with a coherent t-structure. Then:
(1) Coh(€)¥ = Coh(€) N €Y consists precisely of the compact objects of €.
(2) x € PCoh(€) if and only if 7t,x € Coh(€)” and 7, x = 0 forn << 0.
(3) x € Coh(€) if and only if 7t,x € Coh(€)" and 7, x = 0 for all but finitely many n.

In particular, PCoh(C€) is the left t-completion of Coh(C).

Proof. Point (1) one follows by Lemma 1.4.7. Indeed, the t-structure on € is right complete, so that, being €%
a locally abelian 1-category, one of the equivalent conditions (1), (2) and (3) hold. Hence Coh(€)% = (€Y),
consists precisely of the compact objects of €.

Let us prove (2). Let x € C. Since both conditions imply that x is n-connective for some n € Z, we will
assume that x € €x is connective. We wish to show that x € PCoh(€) if and only if ,x € Coh(€)" for
everyn € Z.

Suppose first that x is pseudo-coherent. We will argue by induction on n € N that 7, x is compact in
€". Since for n = 0 the claim is trivial (it simply reduces to note that mox =~ T<ox is compact, being x € €
pseudo-coherent), we can directly proceed with the inductive step. Since C is coherent and mox € (C%). we
can find a 7p-epimorphism p — x from a compact and O-connective object p € C. such that m,p € (V).
Since the compact generator G is bounded above, we can apply Remark 1.3.6 to discover that every compact
object is pseudo-coherent. Thus p € C. is pseudo-coherent so that the fibre f of p — x is pseudo-coherent,
and 0-connective. The inductive hypothesis then ensures that 7;f € (CY), is compact for 0 < i < n —1.
Consider then the exact sequence

0 — coker(7ty f — 7 p) — T x — ker(m,_1f — 1, _1p) — 0.

Now 7, 1f and 7t,,_1p are compact in €Y, the first one by the inductive hypothesis and the second one by
construction. Since (V). is abelian, being C coherent, it follows that ker(rt, 1 f — 7, _1p) is compact, and,
in particular, finitely generated. On the other side, since 7, p is compact, hence finitely generated, it follows
that coker(m,f — 7, p) is again finitely generated. In particular, 7, x is finitely generated since it fits in a
short exact sequence between two finitely generated objects. The exact sequence

0 — coker(7t,p — max) — My f — ker(m_1p — mh_1x) = 0
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shows then that 7, f is finitely generated. Indeed, the cokernel of 7,p — 7, x is finitely generated being
mnx finitely generated, and the kernel of 71, _1p — 7 _1x is compact, being 7,,_1p and 7,_1x compact in
the locally coherent abelian 1-category C¥. By looking again at the exact sequence

0 — coker (7t f — map) — Tx — ker(mn_1f — m_1p) = 0

we see that 7, x is compact, since it fits into a short exact sequence between two compact objects. The
compactness of the first term follows since it is the cokernel of a map from a finitely generated to a compact
object. This concludes the proof: 7,,x is compact in € for every n € Z.

Conversely, assume that 7, x € (C€Y),. for every n € N. We will prove that x can be obtained as geometric
realization of a simplicial object x, such that every x; is compact. As in the proof of Lemma 1.4.10, it will
suffice to show that x can be obtained as the colimit of a sequence

DO) D) S DR) ...

such that " cofib(fy) is compact. Here we agree by convention that fy denotes the zero map 0 — D(0).
We now proceed by induction. Assume that we have constructed a diagram

D(0) = - — D(n) L x

with D(i) € PCoh(€) pseudo-coherent for 0 < i < n that fib(g) is n-connective. The difference with the
proof of Lemma 1.4.10 appears now. We cannot deduce that fib(g) is pseudo-coherent, since we do not
know if x is pseudo-coherent. However, the short exact sequence

0 — coker(m,1D(n) — 74 1%x) — mafib(g) — ker(m,D(n) — myx) — 0

shows that 7, fib(g) is compact, since it fits between two compact objects. Here we have used our assump-
tion on x and the first part of the proof to deduce that every m;D(n) and m;x is compact in the locally
coherent abelian 1-category CV. In particular, since £~ ™fib(g) is connective with compact 7o, the coherent-
ness of C allows us to pick a mp-epimorphism 3 : Z™p — fib(gy) from a compact and 0-connective object
p € Csuch that r,,p € (CY).. We now define D(n + 1) to be the cofibre

Sy —P s fib(gn) —— D(n)

LT e

0 —— cofib(f) —— D(n+1)

of the composite map X™p — fib(gn) — D(n). By the universal property of pushouts we also obtain a map
g’ :D(n+1) — x such that g ~ g’ o f, 1. By means of the octahedral axiom, we obtain a cofibre sequence
I"p — fib(g) — fib(g’), and the associated long exact sequence of homotopy groups proves that fib(g’) is
(n + 1)-connective. Since the maps 7;D(n) — m;x are isomorphisms for n >> 0 and fixed i, Remark 1.4.9
implies that the natural map colim D(n) — x is an equivalence, concluding the proof of point (2).

Point (3) follows immediately from point (2) by noticing that coherent objects are defined to be bounded
above. O

1.5 Pseudo-Compact Objects

We now introduce Neeman'’s pseudo-compact objects.

Definition 1.5.1. Let C be a stable (oo, 1)-category equipped with a t-structure (€>o, C<o). An object x € €
is called pseudo-compact if for every n > 0 there exists a cofibre sequence ¢ — x — d where c € C. is compact
and d € C>,, is n-connective.

We will denote by € the full subcategory of C spanned by the pseudo-compact objects. It can be easily
shown that C; is a stable subcategory of €, by adjusting the argument of [ , Lemma 2.9]. Moreover,
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if C is compactly generated and equipped with a compact generator G € € such that G € €>_n and
o Home (G, C>n) = 0 for some integer N > 0, then [ , Proposition 2.10] shows that € is also thick.

Remark 1.5.2. Let C be geometric (oo, 1)-category equipped with a tensor t-structure. Assume that € is
generated by a single compact object G which is bounded below, say G € C>_n for N > 0. Then C_ is a
C.-submodule.

Consider x € €7 and c € C.. Since C is generated by a single compact object which is bounded below,
we have that ¢ € C>_;;, for some m > 0. Fixn > 0. Being x € C_. pseudo-compact, we can apply the
definition with n + m > 0 and get a cofibre sequence ¢’ — x — d withc¢’ € C. and d € C>nim. By
tensoring with ¢ we get the cofibre sequence ¢’ ®c ¢ — x®c ¢ — d ®e ¢ where ¢’ ®¢ ¢ is again compact and
d®cc€Conim ®e Cs>m CCon.

Definition 1.5.3. [ , Definition 7.3] Let C be a geometric (oo, 1)-category equipped with a single
compact generator G € C.. Assume that C comes equipped with the t-structure generated by G introduced
in Lemma 1.2.12!°. Assume furthermore that 1o Home (G, C>N) = O for some integer N > 0. A strong
(G)n—approximating system is a sequence of objects and morphisms D(1) — D(2) — ... such that:

(1) Each D(i) belongs to (G)n.
(2) The map m(D(i)) — m(D(i + 1)) is an isomorphism in €V whenever 1 < 1.
In this definition we also allow n = oo by declaring (G)o, = C.. Given an object x € €, a a strong (G)n-

approximating system for x is a strong (G)n—approximating system D(1) — D(2) — ... with a map to x that
induces isomorphism 7t (D(i)) — m(x) whenever i > 1.

The notation (G),, is borrowed from [ , Reminder 0.8]. It denotes the full thick subcategory of €
whose objects are finite coproducts of at most n-extensions of the objects £'G, for i € Z.

Our next goal is to show that every pseudo-compact object admits a C.-strong approximating system.
This is a key result in Neeman'’s theorem, and we now present his argument for completeness. But first we
recall a couple of technical results.

Remark 1.5.4 ([ , Lemma 1.4 and Remark 1.5]). Let C be a presentable stable (co, 1)-category. Assume
that C comes equipped with a t-structure with both € and €<¢ closed under the small colimits in C. Let
D(1) = D(2) — ... be a sequence of objects and morphisms in €. Then, for every | € Z, there is an exact
sequence

0 — colim; 1 (D(1)) — m(colim; D(i)) — colimg m_1(D({i)) =0

in the heart €¥. Here colim' is the derived functor of the colimit. In particular, if the sequences 7 (D(1)) —
m(D(2)) — ... eventually stabilize for every 1, then the colim' terms all vanish, and the natural map
colim; 71 (D(i)) — m(colim; D(i)) is an isomorphism.

Remark 1.5.5 ([ , Lemma 2.8]). Let € be a presentable stable (oo, 1)-category. Let (C>0,C<0) be a
t-structure on C. Assume that € comes equipped with a compact generator G € C. and an integer N > 0
such that 1o Home(G,C>n) = 0. Then for any compact object ¢ € €. there exists an integer n > 0,
depending on ¢, with 1o Home (¢, > ) = 0. Indeed, since G is a compact generator, it follows that c € €. =
(G) must belong to some (G)!=™ ™. By picking n = m + N the claim follows.

We can now prove the following.

Lemma 1.5.6 ([ , Lemma 7.5]). Let C be a presentable stable (oo, 1)-category equipped with a single
compact generator G € C.. Assume that C is equipped with the t-structure generated by G introduced in
Lemma 1.2.12"7. Assume furthermore that 1o Home (G, €>n) = 0 for some N € N. Then:
(1) Every (G)n-strong approximating system D(1) — D(2) — ... is a strong (G)n-approximating system
for the filtered colimit colim; D (i). Moreover colim; D(i) belongs to € .

(2) Givenx € € and a strong (G)n-approximating system D for x, then the canonical map colim; D (i) —
x is an equivalence.

16But every t-structure in the preferred equivalence class with presentable aisle will work.
17But every t-structure in the preferred equivalence class with presentable aisle will work.
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(3) Every object x € €. admits a strong C.—approximating system.

Proof. Let us prove (1) first. Take a (G)n-strong approximating system D(1) — D(2) — ... and let d =
colim; D(i) be the colimit. We first show that d is in €>_,, for some n > 0. Since every factor D(i) in
is (G)n, it is also in C.. In particular, being G € C>¢ , every D(i) in €. (Note that if we had picked a
t-structure the preferred equivalence class the argument would have been the same). Chose now n > 0
such that D(1) € €>_n. Since the map m(D(1)) — m(D(m)) is an isomorphism for all 1 < 1, it follows
that 7ty (D(m)) =0 for all 1 > —n and all m. Remark 1.4.8 implies now that the D(m) all lie in €>_,. Hence
the colimit d also belongs to €>_. Now Remark 1.5.4 tells us that the map colim; (D (i)) — m(d) is an
isomorphism for every 1 € Z. On the other side, the cofibre sequence D(m) — D — cofiby, lies in €7,
and since the map@iy(D(m)) — m(d) is an isomorphism for m > 1 we deduce that 7, (cofib,,) = 0 for all
m > L. By applying Remark 1.4.8 once again, we discover that cofiby, € C>m+1,and as D(m) € (G)n C €,
it follows that d € €

Having completed the proof of (1), we now use it to prove (2). Since the map colim; D(i) — x is a
morphism from an object of €. to and object in €7, it must be a morphism in €. Now our assumption
coupled with Remark 1.5.4 tells us that the natural map 71 (colim; D(i)) — 7 (x) is an isomorphism in €.
Apply now Remark 1.4.9 to deduce the claim.

Let us conclude the proof by showing (3). We go by induction. Since x € C_, there exists a cofibre
sequence D(1) — x — cofib; with D(1) € C. and cofib; € €>3. When 1 < 1, the exact sequence

41 (cofiby) — i (D(1)) — m(x) — 711 (cofiby)

has 711 (cofib) = 0 = 71y (cofiby ), starting the construction of D(n). Suppose now that we have constructed
the sequence up to an integer n > 0, that is we have a map f,, : D(m) — x, with D(m) € €., and so that
M (fm) is an isomorphism for all m < 1. Remark 1.5.5 allows us to choose an integer N > 0 so that
1o Home (D (m), €>n) = 0. Because x belongs to C;, we may choose a cofibre sequence D(m + 1) — x —
cofiby41 with D(m + 1) € €. and cofibjmi+1 € CNnim+3. As in the paragraph above we get that the map
m(D(m+ 1)) — m(x) is an isomorphism for all m + 1 > L. Since the composite D(m) — x — D(m + 1) is
null-homotopic, the map f,, must factor as D(m) — D(m + 1) — x, concluding the proof. O

We can now prove our comparison result between pseudo-coherent and pseudo-compact objects.

Proposition 1.5.7. Let C be a geometric (oo, 1)-category equipped with a single compact generator G € C..
Assume that the t-structure is in the preferred equivalence class Assume furthermore that there exists an
integer N > 0 such that

(1) Gis (—N)-connective, G € C>_n.
(2) o Home(G, GZN) =0.
Then PCoh(C) = C;.

Proof. Let x € €. We want to show that x € PCoh(C) if and only if x € C;. First of all, since € has a
single compact generator G € €. which is (—N)-connective for some integer N > 0, Remark 1.3.6 tells us
that every compact object is pseudo-coherent, hence bounded below. In particular, every object in € is an
extension of bounded below objects, and hence bounded below. Since every object in PCoh(€) is bounded
below, we can freely assume that x € C>¢ is 0-connective.

Assume first that x € PCoh(€) N €>¢. The proof of Lemma 1.4.10 showed that x can be written as a
filtered colimit x ~ colim; D (i) where each D(i) is compact. We can now apply [ , Proposition 1.2.4.5].
We deduce the existence of a spectral sequence {E, ,7}>1 in €% with the following properties.

(a) For each r > 1, the objects E{,‘q vanish unless p, q > 0.

(b) Fix p,q > 0. For r > p,q + 1, we have canonical isomorphisms E}, . = E]T;‘rq] = ... in the abelian
category CV. We let EXq € € denote the colimit of this sequence of isomorphisms, so that EX, =
E{)iq forallt’ >r.

(c) For 0 < m <mn, wehave cofib(D(m) — D(n)) € C>m1.
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(d) Fix an integer n € Z. The map m,D(k) — m,D(k + 1) is an epimorphism for k = n and an isomor-

phism for k > n. In particular, we have isomorphisms m,D(n + 1) = n,D(n+2) = .... Welet A,
denote the colimit of this sequence of isomorphisms, so that we have isomorphisms A, = m,D(k) for
k>n.

(e) For each integer n > 0, the object A,, € C“ admits a finite filtration
0=F'ALCFPALC - CF'A, = Ay,

where FPA,, is the image of the map m,D(p) — mnD(n + 1) = A,,. We have canonical isomorphisms
FPApq/FP 7 Apiq = B3
(f) Since € has small limits, we have for every n € Z canonical isomorphisms 7, x = A, in the abelian
category C.
Fix now n > 0. Then the map D(n + 1) — x is a morphism from a compact object to x, and it is a ;-
equivalence for every i < n, hence its cofibre lies in €5, thus showing x € C;.

Assume now that x € €2 N €xo. We will prove that x is pseudo-coherent by showing that it can be
written as filtered colimit x ~ colim; D(1) of 0-connective and pseudo-coherent objects D(i). Then the
(00, 1)-Dold-Kan correspondence [ , Theorem 1.2.4.1] coupled with Lemma 1.3.5 will conclude. Now
we can easily modify the proof of point (3) of Lemma 1.5.6 and pick the D(i)’s in €50 N C.. Since x is
0-connective (hence in €7), point (2) allows us to apply Remark 1.4.9. We deduce that the canonical map
colim; D(i) — x is an equivalence, thus concluding the proof. O

2 Duality for Stable (oo, 1)-Categories

The goal of this chapter is to discuss some categorical properties of the categories we have introduces so
far. In particular, in Section 2.1 we will compare the theory of stable homotopy theories with the theory of
small stable idempotent-complete (co, 1)-categories. We will also discuss the presentability of the two and
we will show that geometric (oo, 1)-categories can be identified with a subcategory of compactly generated
stable homotopy theories.

The core of this chapter is Section 2.2. In particular, we will prove that every geometric functor f* :

B — C contains enough information to exhibit € as a Frobenius algebra object of Mod (Pri®). This will
be Theorem 2.2.5.

2.1 Morita Theory

Recall that Cats(‘too,” denotes the (oo, 1)-category of of small stable (oo, 1)-categories and exact func-

tor. From now on, we will denote by Catfzf” the full subcategory of Cat?too‘” spanned by the stable
idempotent-complete (oo, 1)-categories. By [ , Section 5.1.4], any (oo, 1)-categories admits an idempo-
tent completion, defining then a Bousfield localization

Idem
=
t perf
Cat{oo,1) L Cat, -
v

We call Idem the idempotent-completion functor. It is defined by Idem(C€) = Ind(C)., that is, taking compact
objects in the Ind-completion.

By [ , Proposition 5.5.7.8], the Ind-category construction provides an equivalence between small
idempotent-complete (oo, 1)-categories and compactly generated (oo, 1)-categories. Since the Ind-category
of a stable (oo, 1)-category is again stable by [ , Proposition 1.1.3.6], the above correspondence refines
to an equivalence

Ind : Catl()zf’” — Prhw. (Ind)
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The inverse is given by taking compact objects.

Remark 2.1.1. Is it possible to study the Ind-completion as a functor Ind : Cat?toom — Pry®. Taking
compact objects defines a functor in the other way. However, these two functors are not in general inverse
to each other, since taking compact objects always produce a small idempotent-complete (stable) (oo, 1)-
category.

. . . i
We now define a symmetric monoidal structure on Cat}(’z ;

) and PrSLt’w that makes the Ind-completion
symmetric monoidal. By [ , Proposition 4.8.2.18], the (oo, 1)-category Prl; inherits from Pr" a symmet-
ric monoidal structure whose monoidal unit is given by the (oo, 1)-category of spectra Sp. This structure is
also closed, since the internal object is given by the presentable stable (oo, 1)-category Fun" (€, D) of colimit-

preserving functors. This tensor product induces a tensor product on Cat}(js:f] ) Indeed, for every €y, €5 in

Catl()zf,n the (oo, 1)-category
€1 ® € := (Ind(€;) ® Ind(€2))c,

obtained taking compact objects of the tensor product in Pr}; of the Ind-completions, is still a small stable
and idempotent-complete (oo, 1)-category. Ben-Zvi, Francis and Nadler have studied this construction.
Lemma 2.1.2 ([ , Proposition 4.4]). There is a symmetric monoidal structure on Catf’f‘” such that
for every small stable idempotent-complete (oo, 1)-categories C1,C, and D, the (oo, 1)-category of exact
functors Fun®(€; ® €z, D) is equivalent to the full subcategory of all functors €; x €, — D that preserve
finite colimits in €y and C, separately. The monoidal unit is given by compact spectra.

Furthermore, passing to the corresponding stable presentable (oo, 1)-categories of Ind-objects is natu-

f
P Pl

rally a symmetric monoidal functor Ind : Cat|__

Remark 2.1.3. The equivalence Equation Ind induces a symmetric monoidal structure on Pr®, making
the Ind-construction a symmetric monoidal equivalence. Note that is is also possible to induce a symmetric

monoidal structure on Priy® from Pr}; via the criterion [ , Remark 2.2.1.2]. By means of the Ind-
completion, a symmetric monoidal structure is induced on Catl();f1 - Fortunately, these two construction

are exactly the same.

We can now describe commutative algebra objects in all the symmetric monoidal structures we have
introduced so far. Commutative algebra objects in PrL; are the stable homotopy theories introduced in
Definition 1.1.1, whereas the (oo, 1)-category of commutative algebra objects in Catl()z:f1 ) defines the (oo, 1)-
category

. f
2-Ring = CAlg(CatI();:1 )

of 2-rings, studied in [ , Section 2.2]. The equivalence Equation Ind shows that the theory of 2-rings is
equivalent to the one of commutative algebra objects in

2-Ring = CAlg(Ca’clE’;ri1 = CAlg(Prh®),

that is, to the theory of symmetric monoidal, compactly generated and stable (oo, 1)-categories. Finally,
geometric (oo, 1)-categories are obtained by asking compact objects to be dualizable.

Definition 2.1.4. We will denote by Geom the full subcategory of CAlg(Pry®) spanned by geometric
(00, 1)-categories.

Phrased in these terms, the theory of geometric (0o, 1)-categories exhibits several drawbacks. For exam-

ple, even if it is (remarkably) known that Pr™® and the equivalent (oo, 1)-categories Cat}():;rf1
presentable (see [ , Proposition 2.4 and Corollary 2.9]), it is not clear if Geom has limits or colimits,
and the obstruction lies in understanding the behaviour of compact and dualizable objects. Let us carefully

explain the situation.

= Pro® are
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Remark 2.1.5. Let us first analyze the case of 2-rings. By [ , Proposition 3.2.2.1], small limits in
CAlg(Pr®) are computed in Pry®. That is, the forgetful functor CAlg(Pry®) — Pri® detects limits. For
colimits, the picture is much more complicated. Even if [ , Corollary 3.2.3.3] shows that CAlg(Pr5®)
has small colimits, the forgetful functor does not detect all shape of colimits. An exception is given by sifted
colimits, see [ , Corollary 3.2.3.2].

Remark 2.1.6. Consider now Geom C CAlg(PrSLt’w) and consider a limit lim;c; €; of geometric (oo, 1)-
categories. for every index i € I we have an adjunction

*

Pi
R
limiel Gi 1 Gi

~N_

(i)

in CAlg(Pr®) which determines compact and dualizable objects of the limit. To be precise:
(1) By [ , Proposition 5.5.7.6], or better, its dual, the compact objects of lim;c C; are obtained by the
image of the compact objects of C; along (pi)..
(2) By [ , Proposition 4.6.1.1], an object of lim;¢; C; is dualizable if and only if its image along p; is
dualizable for every i € L.
From these two general observations it is not possible to deduce that lim;¢1 C; is geometric.
Example 2.1.7. Actually, we can also construct a counterexample. Let X be a stack and let QCoh(X) be the

derived stable (0o, 1)-category of quasi-coherent sheaves. By writing X as a colimit of its affine pieces, we
deduce the existence of an equivalence of (oo, 1)-categories

QCoh(X) ~ lim Modg.
Spec(R)—X

Here Modr denotes the stable (oo, 1)-category of modules over R. Now, even if this is a limit of geometric
(00, 1)-categories, QCoh(X) is geometric if and only if X is perfect. See [ , Definition 3.2].

2.2 Duality Theory

Through this section B will denote a commutative algebra object in Pry®. Let € € Mods (Pry®) be a
compactly generated stable (oo, 1)-category with an action of B, and let us denote it by a : B x € — €. Since
for every x € € the functor a(—,x) : B — € preserves small colimits, the adjoint functor theorem implies
the existence of a right adjoint

Notice that the notation €(x,y) is not optimal, since it depends not only on x,y € C, but also on the action
of B on C. Nonetheless, by varying x it is possible to verify that the construction (x,y) — C(x,y) assembles
into a functor €(—, —) : C°? x € — B which we call the B-graph of C.

Remark 2.2.1. Under the above assumptions we can apply the machinery of enriched (oo, 1)-category the-
ory. Indeed, the action of B on € exhibits € as a tensored B-enriched (oo, 1)-category, see Equation 1. In
particular, we can identify the B-graph of € with the B-enrichment €(—, —). This allows us to apply [ ,
Theorem 10.11].

We can now curry the B-graph of € to obtain a functor
u: C%® — Fun(C, B).

Let us denote by 1 the restriction of 1 to €. Since u preserves small limits, 1. is left exact. Since the
domain and codomain of u. are stable, it is also right exact. By the universal property of the Ind-completion
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we get a unique extension

P __ "¢ Fun(@,B)

1 /,/7
T

Ind(CF)

which preserves small colimits. By uncurrying we get a functor
®F :Ind(CF) x € — B.
We have then the following result.

Lemma 2.2.2. Let C € Mods (Priy®) be a compactly generated stable (0o, 1)-category tensored over B. Then
the functor ®% constructed above preserves small colimits in each variable.

Proof. Since the construction of ®% shows that it preserves small colimits in the first variable, it will suffice
to show that for every x € Ind(CPF) the functor (Dg(x, —) : € — B preserves small colimits. Since the
collection of those x € Ind(Ce¥) such that (I)%3 (x,—) : € — B preserves small colimits is closed under small
colimits, we may assume x € eF. In particular, we are left to show that u.(x) : € — B preserves small
colimits, that is, the assignment y — u(x)(y) = €(x,y) does that. Since C(x,—) is clearly exact and small
colimits are constructed via finite colimits and filtered colimits, it suffices to show that it preserves filtered
colimits. This follows since x € €¢¥ is compact. O

We now combine this result with the monoidal structure on Mod (Priy®) given by the relative tensor
product (see [ , Section 4.4]). What matters to us is that the functor ®3 induces a colimit preserving
functor ec : Ind(Ce’) @5 € — B thanks to the universal property of the relative tensor product.

Proposition 2.2.3. Let C € Mods (Pry®) be a compactly generated stable (oo, 1)-category tensored over B.
Then the functor ec constructed above is a duality datum in Modg (PrsLt"“). That is, € is a dualizable object
in Mod g (Pr;‘t‘“’) and its dual can be identified with Ind(CF).

Proof. By [ , Lemma 4.6.1.6] it suffices to show that for every D, & € Mod (Priy“) the composite map

Homyoq,, (prtow) (D, € @5 €)

|

Homyoq,, (prtow) (INd(CF) @5 D, Ind(CF) @5 € @5 €)

|

Homy;oq.,, (PrSLt,W)(Ind((?gp) ®5 D, &),

which we call 9, is an equivalence. Here the first map is induced by tensoring with Ind(€¢") and the second
by post-composition with ec. Now, the definition of the relative tensor product implies that we can identify
Homyoq,, (prtow) (INd(CF) @5 D, €) with the subcategory of Funs (€7 x D, &) whose objects are B-linear
functors which are exact in the first argument and colimit preserving in the second, and whose morphisms
are equivalences. In particular, we can identify 6 with the map

Homyq,, (prt.w) (D, € @3 €) — Homyoq,, (prt.w) (D, Fun, (€ &)
given by post-composition with the equivalence
C®p & ~ Fung(C%, &) ~ Fung (CF,€).

Here the first equivalence is given by definition of relative tensor product whereas the second one follows
since € and B are compactly generated. O
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Let us now specialise these constructions in the case where B is a geometric (oo, 1)-category and €
is not just a module over B but actually a geometric (oo, 1)-category equipped with a geometric functor
f*: B — €. As we have discussed in Section 1.1, the tensor product of € allows us to construct the internal
hom functor Home(—,—) : €% x € — €. We can use this functor to construct the B-graph of C, so that
the geometric functor f* exhibits € as a B-enriched (oo, 1)-category. Indeed, the functor f* equips € with
the structure of a commutative algebra object in Pri® under B, so that we can interpret this structure as a
module action

a:BxC— e (byx) — f*(b) ®e x.

By fixing x € € we see that the right adjoint to a(—,x) = f*(—) ®¢ x is given by C(x,—) ~ f,Home(x, —).
Now the previous proposition implies then that € is a dualizable object in Modg (Pry®) with dual

Ind(€c¥). However, the geometric nature of € allows us to sharpen this result by better identifying the dual.
But first we need to recall the notion of Frobenius algebra object in a symmetric monoidal (oo, 1)-category.

Remark 2.2.4. Let C be a symmetric monoidal (oo, 1)-category. Let x € CAlg(C) be a commutative algebra
object with multiplication map m : x ®e x — x. We will say that x is Frobenius algebra object of C if there
exists a morphism I' : x — 1¢e such that the composite 'om : x ®e x — x — 1¢ is a duality datum in C. By
[ , Proposition 4.6.5.2] an algebra object is a Frobenius algebra object if and only if it is dualizable and
equivalent to its dual.

We can now prove the following.

Theorem 2.2.5. Let f* : B — € be a geometric functor, and let I' : € — B denote the functor given by
I'(x) = €(1e,x). Then (C,T) is a Frobenius algebra object of Mods (PrSLt’w). In other words, the composite
morphism

w:CezC—oe LB

is a duality datum in the symmetric monoidal (oo, 1)-category Mod (Pr5®).

Proof. We wish to that the composition u: € ®3 € — B given by the tensor product on € and I' is a duality
datum. First of all, u classifies a functor 3 : € x ¢ — B given by B(x,y) = C(le,x ®e y). Secondly,
Proposition 2.2.3 implies that there exists a unique functor F : ¢ — Ind(C”) such that the triangle

e x ¢ s mde®) x e
\lcpb

commutes. Here @} is the functor constructed at the beginning of this section. Our goal is to show that F
is an equivalence, and to do that we will show that it is fully-faithful and essentially surjective. Let us first
note that F is defined by taking duals on compact objects. Indeed, since for every x € C. we have

B(X)_) = G(]]-(%X@(? _) = e(xv)_)

the above diagram implies the claim. In particular, F(€.) C €. Fully-faitfhulness of F now follows by
the fully-faithfulness of F|le, combined with the fact that F preserves filtered colimits by construction. The
essential surjectivity follows since the essential image of F contains C¢¥ and it is closed under filtered col-
imits. O

3 Neeman Dualities

The goal of this chapter is to prove Functors out of ¢ and Functors out of Coh(C). We will begin with
Section 3.1 by introducing quasi-perfect and quasi-proper functors. These notions are modelled on quasi-
perfect and quasi-proper scheme maps. To be precise, a t-geometric functor f* : B — € will be called quasi-
perfect (respectively, quasi-proper) if the t-structures on B and € are the one in the preferred equivalence
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classes and the right adjoint f,, which is required to be right t-exact up to a finite shift, preserves compact
(respectively pseudo-coherent) objects. Our main result is then Corollary 3.1.7, which shows that every
quasi-perfect functor is quasi-proper. In particular, the abstract Grothendieck-Neeman duality will (almost)
imply the first abstract Neeman duality.

We will prove Functors out of C2” in Section 3.2 by carefully playing with the enriched Yoneda embed-
ding. Since we have already explained our strategy in the introduction, let us just give the most important
details. Our proof relies on the equivalence & : € — Fung (CF, B) induced by the enriched Yoneda embed-
ding. Our strategy consists in computing the kernel of the enriched Yoneda embedding when the target is
restricted to a B.-submodule By C B. The result will be Theorem 3.2.2. The first abstract Neeman duality
(that is, Theorem 3.2.4) consists in a further computation of the kernel when the B.-submodule is given by
Coh(B) C PCoh(B). The main ingredient will be Lemma 1.3.5.

Our work towards the second abstract Neeman duality begins in Section 3.3 by introducing the theory
of morphisms of universal descent. Since the theory is fairly technical, we refer the reader to the principal result
of the section. The first one, that is Proposition 3.3.8, shows that for a morphism of universal descent h* :
€ — R the compact objects C. can be reconstructed in terms of a cosimplicial diagram (R)®¢e*® constructed
in terms of the compact objects of the target. The second main result, that is Lemma 3.3.12, shows that
morphisms of universal descent preserve and detect both compact and pseudo-compact objects, and that,
under finite tor-dimension, the same happens for bounded pseudo-compact objects.

Finally, in Section 3.4 we will prove Functors out of Coh(C) by descent via a relative notion of morphism
of universal descent whose target is a regular (oo, 1)-category. Regular (oo, 1)-categories are defined as those
geometric (oo, 1)-category for which compact and coherent objects coincide (so that, up to a duality, the
second abstract Neeman duality follows immediately from the first one). The existence of a (relative) mor-
phisms of universal descent to a regular (oo, 1)-category is not known in general and constitutes the main
obstruction of the second abstract Neeman duality.

3.1 Quasi-Perfect and Quasi-Proper Functors

We begin with some terminology.

Definition 3.1.1. Let f* : B — € be a t-geometric functor. We will say that:

(1) f*is of finite tor-dimension if there exists N € IN such that f*(B<o) C C<n.

(2) f* is of finite cohomological dimension if there exists N € N such that f,(C>¢) € B>_n.
In the limit cases where N = 0, we will say that f* is flat and affine, respectively.

That is, f* is of finite tor-dimension if it is right t-exact and left t-exact, up to a finite shift, and of finite
cohomological dimension if its right adjoint f. is left t-exact and right t-exact up to a finite shift. More
generally, we will say that a functor between geometric categories is t-bounded if it it is right and left t-
exact, up to a finite shift. Hence, if f* has finite tor-dimension, then it is t-bounded, and if it is of finite
cohomological dimension, then f, is t-bounded.

Remark 3.1.2. Since f* preserves compact objects and is right t-exact, it preserves pseudo-compact objects.
Indeed, if x € B, then for every m > 0 we can find a cofibre sequence b — x — e where b € B, is
compact and e € B>,,. By applying f*, we see that the cofibre sequence f*(b) — f*(x) — *(e) exhibits
f*(x) as a pseudo-compact in C. If now f* is also of finite tor-dimension, then f* preserves coconnective
pseudo-compact objects.

We are more interested in understanding when the right adjoint f, : € — B preserves pseudo-coherent
objects. Note that, when f. sends pseudo-coherent to pseudo-coherent, then it also preserves coherent
objects, being left t-exact. Anyway, let us give a name to these functors.

Definition 3.1.3. Let f* : B — € be a t-geometric functor of finite cohomological dimension. We will say
that f* is quasi-proper if:

(1) Both B and C are equipped with a single compact generator.

(2) The t-structures are in the preferred equivalence classes.
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(3) The right adjoint f, : € — B preserves pseudo-coherent objects.

The nomenclature comes form algebraic geometry. Indeed, a map f : X — Y between quasi-compact
quasi-separated schemes is called quasi-proper if the (derived) pushfoward f, preserves pseudo-coherent
complexes. We suggest Lipman and Neeman’s article [ ] for a nice review of all the categorical prop-
erties of the (derived) pushfoward. For us what matters is that they also review the notion of quasi-perfect
maps, that is those maps of quasi-compact quasi-separated schemes whose (derived) pushfoward preserves
perfect complexes. This notion has an immediate generalization in our context.

Definition 3.1.4. Let f* : B — € be a t-geometric functor of finite cohomological dimension. We will say
that f* is quasi-perfect if:

(1) Both B and C are equipped with a single compact generator.

(2) The t-structures are in the preferred equivalence classes.

(3) The right adjoint f, : € — B preserves compact objects.

Remark 3.1.5. Note that when f* is quasi-perfect, then the abstract Grothendieck-Neeman duality, that is
Theorem 1.1.11, applies.

The main result of the above mentioned article is [ , Theorem 1.2]. It says that a quasi-compact
quasi-separated map f : X — Y between quasi-compact quasi-separated schemes is quasi-perfect if and
only if it is quasi-proper and the twisted inverse image f!) is t-bounded (or, equivalently, that f is quasi-
proper and of finite tor-dimension). We can prove a (partial) analogue of this statement in the abstract
setting we are developing.

Lemma 3.1.6. Let f* : B — C be a t-geometric functor of finite cohomological dimension between t-
geometric (oo, 1)-categories equipped with compact generators F € B, and G € C.. Assume there exist
integers N, M > 0 such that:

(1) FeB>_nand G € C>_m.
(2) mo Homg (F, B>n) = 0 and 7o Home (G, C>am) = 0.
If the t-structures on B and C are in the preferred equivalence class, then the following are equivalent.
(1) f*is quasi-proper.
(2) f, carries compact objects to pseudo-coherent objects.

(3) f. carries the compact generator G of C to a pseudo-coherent object.

Proof. The implications (1) = (2) = (3) are clear. Let us prove that (2) = (1). Standing to our assumption
on the compact generators, Proposition 1.5.7 implies that pseudo-coherent objects in B and € are exactly the
pseudo-compact objects. In particular, we are left to prove that f, preserves pseudo-compact objects. Let
K € N be the cohomological dimension of f*, so that f.(C>0) € B>_k. Let x € C be pseudo-compact, and
fix an integer n > 0. By assumption, there exists a cofibre sequence ¢ — x — ¢’ withc € €. and ¢’ € Conk.
By applying f. we get the cofibre sequence f.(c) — f.(x) — f.(c’), where f.(c) is now pseudo-compact
and f.(c’) € C>n. In particular, we can find a cofibre sequence b — f,(c) — b’ withb € B, and b’ € Bx,,.
By pasting, the diagram

b f.(c) fu(x)
| I
0 b’ cofib(b — f,(x))

| |

00— f.(c")
shows that cofib(b — f.(x)) € B>y, is n-connective, and thus that f,(x) is pseudo-compact.

Let us conclude by proving (3) = (2). By Lemma 1.3.3, the subcategory PCoh(C) C € is thick. Therefore,
the subcategory {x € C|f,(x) € PCoh(B)} is a thick subcategory of C. But since C. is the smallest thick full
subcategory containing G, we can conclude if G is sent by f, to a pseudo-coherent object. This is exactly
our assumption. O
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In particular, we deduce the following result.

Corollary 3.1.7. Let f* : B — C be a t-geometric functor, and assume that € has a compact generator. If f*
is quasi-perfect, then it is quasi-proper.

Proof. If f* is quasi-perfect, then its right adjoint f,. preserves compact objects. Condition (3) of Lemma 3.1.6
applies. O

We can also prove that, under suitable assumptions on the monoidal structure of the categories involved,
every quasi-proper of finite tor-dimension is quasi-perfect. To do that, we need first to identify the compact
objects as the pseudo-coherent objects of finite tor-amplitude.

Definition 3.1.8. Let C be a stable symmetric monoidal (oo, 1)-category equipped with a t-structure. An
object d € € has tor-amplitude in [a, b] if i (d ®e x) = O for every discrete object x € €V and i ¢ [a,b]. We
will say that d has finite tor-dimension if it has tor-amplitude in [a, b] for some a,b € Z.

Let Tor=*°(€) denote the full subcategory of € spanned by the objects of finite tor-dimension.

Lemma 3.1.9. Let C be a stable symmetric monoidal (oo, 1)-category equipped with a t-structure. Then
Tor=°°(€) is a stable subcategory, closed under retracts.

Proof. We use [ , Lemma 1.1.3.3]. Clearly, Tor=*°(€) contains the zero object of €. Let us consider a
map f: d — d’ between objects of finite tor-dimension. Without loss of generality, assume that they both
have tor-amplitude in [a, b]. Compute the cofibre d — d’ — cofib(f) and consider a discrete object x € €.
Since the tensor product is exact, we get the cofibre sequence d ®e x — d’ ®e x — cofib(f) ®¢ x. This gets
us the long exact sequence

o = 41 (cofib(f) ®e x) = mi(d ®e x) = mi(d’ ®e x) — mi(cofib(f) Re x) = mM_1(dRe x) — ...

in the heart in €. Since 7; (d®e x) and 7ty (d’ ®e x) vanish for i ¢ [a, b], the same happens for mt; (cofib(f) ®e
x), showing that cofib(f) is of finite tor-dimension. Since ;X' ~ 71 it is immediate to check that if d
has tor-amplitude in [a, b] then Y~ 'd has tor-amplitude in [a — 1,b — 1]. This makes Tor=>°(D) a stable
subcategory of C.

Finally, if d — d’ — d is a retract of an object d’ of finite tor-dimension, then, for every x € eV, the
retract d ®e x — d’ ®e x — d ®e x shows that the homotopy groups of d ®¢ x vanish whenever the
homotopy groups of d’ ®e x vanish. O

Lemma 3.1.10. Let € be a stable homotopy theory equipped with a geometric tensor t-structure. Assume
that G € Cis a compact generator and that the unit of the monoidal structure is discrete. Then G € Coh(C)
if and only if €. = PCoh(€) N Tor=*°(C).

Proof. Assume first that that the compact objects coincide with the pseudo-coherent objects of finite tor-
dimension. Since the compact generator G is, well, compact, it must be pseudo-coherent. Hence we have
to check that it is also bounded above. Since it is also of finite tor-amplitude and the unit 1¢ is discrete, we
have m;(G) = m;(G ® 1¢) =0 for i & [a, b]. Hence G € C<yp.

Conversely, assume that the compact generator G € Coh(C) is coherent. We would like to show that
PCoh(€) N Tor=>°(€) is a thick subcategory containing G. By Lemma 1.3.3 and Lemma 3.1.9, we see that
the intersection PCoh(€) N Tor="°(€) is thick. Since Coh(€) C PCoh(€), it suffices to show that G is of finite
tor-dimension. This is immediate, since G is bounded above and below. O

Example 3.1.11. Let R be a connective [E;-ring spectrum and let Mod denote the stable presentable (oo, 1)-
category of R-module spectra equipped with the usual symmetric monoidal structure. Since the unit R is
a compact generator, we can apply Lemma 1.2.12 to deduce that Modr comes equipped with a geometric
tensor t-structure. In particular, even if compact objects coincide with pseudo-coherent objects of finite tor-
dimension by [ , Proposition 7.2.4.23], we cannot argue that R € Coh(Modg): the unit is not bounded
above in general! The next remark fixes this issue.
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Remark 3.1.12. We can improve the assumptions of Lemma 3.1.10 by requiring the monoidal unit to be
bounded above (hence bounded). Indeed, if the compact generator G € €. has tor-amplitude [a, b] and
le € C<n for some n € Z, then we can argue by induction on the cofibre sequence

Tenle = Tan1le — IV M, e
that 1;G = 71;(G ® 1e) = O vanishes fori € [a— (N +1),b+ N+ 1].

Remark 3.1.13. Let C be a stable symmetric monoidal (oo, 1)-category equipped with a t-geometric t-
structure. Lemma 3.1.10 is tacitly imposing an identification between the geometry and and categorical
structure of €. Define Perf(C) to be the intersection PCoh(€) N Tor=>°(C), and call its objects perfect ob-
jects. This subcategory is defined only in terms of the t-structure, hence it feels only the geometry of €. The
above lemma says that, in the presence of a coherent compact generator, the geometry Perf(C) coincides the
categorical structure C..

Remark 3.1.14. It is still possible that the geometry Perf(C) coincides with the categorical structure C.
without € having a coherent compact generator. The category of modules Modr over a connective but not
bounded E-ring R is such an example. Schemes, on the other side, produce examples of (oo, 1)-categories
satisfying the assumption of Lemma 3.1.10.

Following the argument proposed in [ , Corollary 3.7.2] we can also prove a converse to Corol-
lary 3.1.7.

Lemma 3.1.15. Let f* : B — C be a t-geometric functor and assume that both B and € are compactly
generated by a coherent object, and that their unit are bounded. If f* is quasi-proper and of finite tor-
dimension then it is quasi-perfect.

Proof. Lemma 3.1.10 gives us a complete description of the compact objects in B and C: they are precisely
the pseudo-coherent objects of finite tor-amplitude. In particular, since f, preserves pseudo-coherent ob-
jects (being f* quasi-proper), to show that f* is quasi-perfect it suffices to show that f, preserves finite
tor-amplitude. Let x € Tor=*°(C) be of finite tor-amplitude [a,b] and let y € BY be discrete. We wish
to show that 7'[? (f.(x) ®s y) vanishes for i outside some interval [A,B]. Now the projection formula of
Proposition 1.1.9 gives us an isomorphism

7P (f.(x) @5 Y) = 7P (f.(x ®e £ (y)).

Since f* is of finite tor-dimension, we have that f*(y) € C<n for some integer N > 0. This allows us
to make two reductions. First of all, by arguing via induction on the cofibre sequence 1< x ®¢ f*(y) —
T, 1x®e f*(y) = IV 118 (x @e f*(y)) we can assume that x ®¢ f*(y) is in the heart €Y. In particular, this
implies that

i (f(x @e 1 (y)) = PR (x @e (y))

where Pf, is the functor defined in Remark 1.2.17. Secondly, we can assume that f*(y) € €% is discrete, by

arguing via induction on the cofibre sequence Tgnf* (y) — Tgnq f*(y) — I (f*(y)) as before. Now

the claim follows since x € Tor=*°(€) is of finite tor-amplitude. O

3.2 Functors out of CF

Let f* : B — C be a geometric functor and let f, be its right adjoint. In Section 2.2 we learned that the
restricted Yoneda embedding induces equivalence

€ — FunF (CF,B), x = C(—,x).

Our goal is now to study the above Yoneda embedding when the source is a C.-submodule Cy, such as
Coh(€) € PCoh(€) under suitable assumptions on €. In general, by restricting the source to a €.-submodule
Co, the Yoneda embedding will still be fully-faithful. However, it will cease to be an equivalence, since not
every exact and B.-enriched functor €' — B arises from an object of Cy. For this reason, it is helpful to
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approach the problem from the other side. Instead of restricting the source of the Yondea embedding, it is
easier to restrict its target, and then identify its kernel.

Definition 3.2.1. Let f* : B — C be a geometric functor and let By be a B.-submodule of B. The compact
pullback along f, of By is the full subcategory of C defined as

#(Bo) ={x € C|f.(c ®c x) € By forall c € C.}.

By definition, it is clear that compact pullback #(Bo) along f, of a B.-submodule By is C.-submodule.
The next result identifies the compact pullback #(By) as the kernel of the target-restricted Yondea.

Theorem 3.2.2 (Functors out of CF). Let f* : B — Cbe a geometric functor and let By a B.-submodule.
Then there is an equivalence of (oo, 1)-categories

*(Bo) — Fun§_(CF, Bo)
induced by the restrict Yoneda embedding.
Proof. Leti: By — B be the inclusion. We begin by showing that the functor
i, : Fung (CF, By) — Fun%c(egp,‘B)

is fully-faithful. First of all, the enrichment condition is vacuous since i is the inclusion of a B.-submodule.
Futhermore, the exactness of i ensures that i, preserves exact functors. Therefore we are reduced to show
that, the post-composition i, : Fun(C¥, By) — Fun(CF,B) is fully-faithful. The claim now follows by
[ , Theorem 6.4.7]: it is a general fact that the post-composition i, is fully-faithful if and only if i is
fully-faithful. Consider now the following commutative diagram

#(Bo) — Fun§ (€, Bo)

| [

€ —=— Fun§_(C¥, B).

where we have depicted the equivalence given by the Yoneda embedding and the fully-faithfulness deter-
mined before. Now the restricted Yoneda embedding is still fully-faithful by the 2-out of-3 property. Its
essential surjectivity, instead, follows by diagram chasing. O

We now discuss the case where By is the subcategory of (pseudo-)coherent objects. Assume that B
comes equipped witha geometric t-structure and that it is generated by a single compact object. If this
generator is connective, then Remark 1.3.6 implies that B, € PCoh(3B). If the t-structure is furthermore
tensor, then Lemma 1.3.8 applies. We deduce that Coh(B) and PCoh(B) are B.-submodules.

Lemma 3.2.3. Let f* : B — C be a quasi-proper functor. Then PCoh(C) C f#(PCoh(B)) and Coh(C) C
#(Coh(B)).

Proof. Indeed, being PCoh(C) a C.-submodule, we have that the tensor product of € restricts to a functor
PCoh(€) x €. — PCoh(C). Since f* is quasi-proper, the right adjoint f, sends PCoh(€) to PCoh(B). In par-
ticular, every pseudo-coherent object of € must be contained in the compact pullback along f, of PCoh(B).
The second inclusion follows since coherent objects are the coconnective pseudo-coherent objects, and f, is
left t-exact. O

In particular, we can combine this observation with Theorem 3.2.2 to deduce that for a quasi-proper
functor f* : B — € there are fully-faithful functors

PCoh(€) C f*(PCoh(B)) — Fung (€, PCoh(B)), Coh(€) C f*(Coh(B)) — Fung_(€",Coh(B)).

In order to deduce the other inclusions we need to exploit the compact generators.
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Theorem 3.2.4 (Functors out of €¢¥). Let f* : B — € be a quasi-proper functor. Assume that B is coherent.
Assume furthermore that the compact generator G of C is such that ¢(G,—) : ¢ — B detects connective and
coconnective objects and that o Home (G, €>n) = 0 for some integer N > 0. Then there are equivalences
of (oo, 1)-categories

PCoh(€) — Fun§_ (€, PCoh(B)), Coh(€) — Fun§_(€¥,Coh(B))
induced by the restricted Yoneda embedding.

Proof. We only need to show the inclusions f*(PCoh(B)) C PCoh(€) and f*(Coh(B)) C Coh(C). First
of all, note that if we prove the first inclusion, then the second will follow since the Yoneda embedding
C(G,—) : € — B detects coconnective objects. Let N € IN be the cohomological dimension of f*, so that
f.(C>0) € B>_n. Let x € f/(PCoh(B)), so that f.(x ®¢ c) is in PCoh(B) for every compact object ¢ € C..
Since €(G,x) = f,Hom(G,x) ~ f.(x ®e GV) is pseudo-coherent, hence connective, it follows that x must
be connective. Without loss of generality, assume x € €>¢. Thanks to Lemma 1.3.5 (and Lemma 1.4.10), to
show that x is pseudo-coherent it will suffice to obtaining it as geometric realization of a simplicial object
Xe Where each x,, is compact and 0-connective. As usual, it suffices to show that x can be written as filtered
colimit over a diagram

D(0) D) = ...

where each 2 "cofib(f, ) is compact. By agreeing that fy denotes the zero map 0 — D(0) we can argue by
induction. Assume that we have constructed

D)5 -5 Dm) Sx

D(0)
with D(i) compact in € for 0 < i < n and’® fib(g) € €>,,_n. Since D(n) is pseudo-coherent and f. pre-
serves pseudo-coherent objects, it follows that f,(fib(g)) is pseudo-coherent, being f..(x) pseudo-coherent
by assumption. Since the bottom homotopy group 7, nf.(fib(g)) € (BY). is compact in the heart, we
can pick a mp-epimorphism £"~Nq — f.(fib(g)) where q is compact and 0-connective. Here we have used
the fact that B is coherent. By adjunction, we get a morphism f*(£"Nq) — fib(g) from a compact and
(n — N)-connective object. We now construct D(n + 1) as the cofibre

f*(INq) ———— fib(g) ————— D(n)

| | [

00— fib(g)/f*(X"q) —— D(n+1)

By applying the argument of Lemma 1.4.10 we conclude that x is pseudo-coherent, thus showing the inclu-
sion f*(PCoh(B)) C PCoh(€). O

This concludes the proof of Functors out of C.". We end this section by proving a couple of properties
of the Yoneda embedding €(G,—) : € — B.

Lemma 3.2.5. Let f* : B — C be a t-geometric functor of finite cohomological dimension and assume
that C comes equipped with a compact generator G which is (—N)-connective for some integer N > 0.
Assume also that the t-structure on C is in the preferred equivalence class. Then the Yoneda embedding
C(G,—) : € — Bis t-bounded.

Proof. Let M > 0 be the cohomological dimension of f*, so that f.(C>0) € B>_m. The left texactness up
to a shift of €(G,—) : € — B is immediate. Indeed, since G is compact, hence dualizable, we have an
equivalence

G(G)*) = f*I_I()irHG(G)*) = f*(Gv e *)

Since GY € C>_n, for some integer n > 0, being G¥ compact, it follows that f,(C>_» ®¢ C>0) € B>_mM-—n,
thus showing C(G,C>0) € B>_m—n. The left texactness up to a shift of €(G,—) : € — B is just as easy.

18Compare with Lemma 1.4.10. We have changed the induction hypothesis! Notice that the fibre of the zero map 0 — x is x and it
isin > € C»_n since N > 0.
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Indeed, Lemma 1.2.15 implies that Home(C>_n,C<o) € C<n, so that €(G,C<p) = f.Home(G,C<o) C
BN O

Notice that, despite its fully-faithfulness, this result is not sufficient to deduce that it detects connective
and coconnective objects. The right and left error of t-exactness are independent on each other!

Lemma 3.2.6. Let f* : B — € be a t-geometric functor of finite cohomological dimension and assume that
C comes equipped with a compact generator G. Assume also that the t-structure on € is in the preferred
equivalence class.

(1) Then the Yoneda embedding C(c,—) : ¢ — B is t-bounded for every compact object ¢ € C.

(2) If €(G,—) : € — B detects connective and coconnective objects, then C(c,—) : € — B detects connec-
tive and coconnective objects for every compact object c € C.

Proof. Let us begin with (1). Consider the full subcategory €’ of € spanned by those ¢ € C such that the
Yoneda embedding C(c,—) : € — B is t-bounded. By the previous lemma it contains the compact generator
G. Being it thick, it follows that €. C €/, thatis, C(c,—) : € — B is t-bounded for every compact object
¢ € C. Point (2) follows by an analogue argument. O

3.3 Morphism of Universal Descent

We now introduce the theory of universal descent associated to a geometric functor. But first let us fix
some terminology.

Remark 3.3.1. In the following we will denote by A the simplex category, and by A<y, be the full subcate-
gory of A spanned by those objects [m] € A such that m < n. We will also denote by A* the augmented
simplex category, and we will denote by [-1] the augmented object. Let D be an (oo, 1)-category. An aug-
mented cosimplicial object in D is a functor C* : AT — D.

Let h* : € — R be a geometric functor. We define two different augmented cosimplicial objects.

(1) First of all, we can regard R as C-module in PrSLt’w. In particular, we can form the Cech nerve of h*
inside Mode (Priy®). Objectwise, this augmented cosimplicial object is given by

] — R®e - @e R,

where the tensor product is taken (n + 1)-times if n > 0. If n = -1 we set [-1] — €. The augmentation
map is given by h* : € — R. We will generally regard it as a cosimplicial object in Pri® and we will
denote it by C* : A* — Priy®.

perf

(2) Since h* is geometric, it restricts to a functor h* : €, — R.. Since R, is a C.-module in Cat(OO 1y the

perf

same construction as before produces an augmented cosimplicial object €2 : A™ — Cat(_ ;).

Since the Ind-completion furnishes a symmetric monoidal equivalence Ind : Cat}():f]) — Prh®, the two

augmented cosimplicial objects contains the same amount of data. However, it is easier to impose assump-
tions on the second augmented cosimplicial object. To explain what we mean, let us give the following.

Definition 3.3.2. Let € : AT — Cat?zg]) be an augmented cosimplicial object. We will say that C? satisfies
the Beck—Chevalley condition if for any morphism « : [m] — [n] in A™ the square

m _d° m+1
e —— ¢

o{ |

n n+1
ec do GC
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is horizontal right adjointable, that is, the horizontal maps admits right adjoints and the canonical mor-
phism a0 d0 — d° o « is an equivalence.

The following result is an instance of the claim made above.

Lemma 3.3.3. Let h* : € — R be a geometric functor, and €2 : AT — Cat}(’f” the associated augmented
cosimplicial object. If C¢ satisfies the Beck—-Chevalley condition, then the right adjoint restricts to a functor
hy : Re — Ce.

Proof. Apply the definition to e = id[_1) and use d° = h* to deduce the existence of a right adjoint r : R, —
Cc. By Ind-completing it follows that r must be équivalence to h. restricted to the compact objects. O

Let h* : € — R be a geometric functor. We now construct a filtration
P 01 2 Po

of small colimit (and limit) preserving functors ¢ — €. For every integer n > 0 we define ¢, : € — € to be
the limit
¢on = lim(h,h* = h,h*h,h* 3 ...)
<n

where the morphisms in the diagram are obtained via pre- and post-composition with the unit of the ad-
junction h* - h,. The natural transformations ¢, — @n_1 are then given by the universal property of the
limit, by projecting from the pieces of ¢, and forgetting the last term in the limit. In particular, a careful
analysis of the natural transformations involved, together with the triangle identities, shows the following
result.

Lemma 3.3.4. For every integer n > 1 the cofibre of ¢, = @n_1 is equivalent to (h,h*)™.

Morphism of universal descent are defined to be the one for which the filtration becomes uninteresting
for larger indexes.

Definition 3.3.5. Let h* : ¢ — R be a geometric functor. We will say that h* is of universal descent if:
(1) The associated augmented cosimplicial object C? satisfies the Beck—Chevalley condition.
(2) There exists an integer e > 0 such that the identity on € is a retract of @e..

We will call e the exponent of h*.

Remark 3.3.6. Let h* : € — R be a geometric functor of universal descent. Since the associated augmented
cosimplicial object C2 : AT — Cat?zfn satisfies the Beck—Chevalley condition, we get that h, preserves

compact objects. In particular, then the filtration - - - — @n — - — @1 — @ restrict to a filtration of exact
functors €. — €.. We conclude that the identity on C. is a retract of @¢|ec, for some exponent e > 0.

Our next goal is to show that for morphism of universal descent h* : € — R the (oo, 1)-category €. can
perf

be reconstructed from the augmented cosimplicial object € : A* — Cat|_

1)- By Ind-completing, the same

result holds for €* : A* — Pr5®. Since the forgetful functor Mode (Priy®) — Pri® preserves and detects
limits, we deduce that, for morphism of universal descent h* : € — R, the source can be reconstructed as a
geometric (oo, 1)-category from the target (see [ , Proposition 4.6.1.1]).

In order to prove our main result we need first a technical lemma.

Lemma 3.3.7. Let h* : € — R be of universal descent. Then h* is conservative.

Proof. Let  : x — x’ in € be a morphism such that h*(«) is an equivalence in R. We wish to show that «
is an equivalence. By assumption there exists some integer e > 0 such that the identity ide is a retract @e.
Since equivalences are stable under retracts, it suffices to show that @.(c) is an equivalence. This follows
by the explicit definition of the ¢'s. O

We then deduce the following.
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Proposition 3.3.8. Let h* : € — R be a geometric functor of universal descent. Then C? is a limit diagram.
In other words, the canonical map
Cc — lién (Re)®ee®

is an equivalence of (oo, 1)-categories.

Proof. We wish to apply [ , Corollary 4.7.5.3]. Since C satisfies the Beck-Chevalley condition and since
the augmentation map h* is conservative by Lemma 3.3.7, we are left to prove that the (oo, 1)-category €.
admits geometric realizations of h*-split simplicial objects, and those geometric realizations are preserved
by h*.

Let U C Fun(A, C.) be the full subcategory spanned by those cosimplicial objects which admit limit in
Cc and which is preserved by h*. Notice that U is a thick subcategory (since C. is idempotent-complete).
Moreover, it contains those cosimplicial objects which admit splittings (since they admit a limit, and since
applying h* furnishes cosimplicial objects which admit splittings, hence that have a limit). Let now x* :
A — €be an h*-split cosimplicial object. Since x* € U by assumption, we are done. O

We can also add the input of a t-structure.

Definition 3.3.9. Let h* : C — R be a t-geometric functor. We will say that h* is of universal descent if:
(1) Itis of universal descent in the sense of Definition 3.3.5.
(2) Itis of finite cohomological dimension.

(3) Itis of finite tor-dimension.

Remark 3.3.10. Let h* : € — R be a t-geometric functor of universal descent. Assume that C and R come
equipped with single compact generators and assume that the t-structures are in the preferred equivalence
class. Since Lemma 3.3.3 implies that h, : R — € preserves compact objects, it follows that h* is quasi-
perfect. In particular, it is quasi-proper.

Remark 3.3.11. In the following we will also need a relative situation. Let h* : € — R be a t-geometric
functor of universal descent, and let R € R be a compact generator. If we are given a t-geometric functor
f* : B — € satisfying the assumption of the first abstract Neeman duality, we will say that h* : € — R is
of B-universal descent if the composite functor h* o f* satisfies the assumption of the first abstract Neeman
duality. More explicitly, this condition boils down to show that the Yoneda R(R,—) : R — B detects being
connective and coconnective.

We conclude this section with one last observation regarding t-geometric functors of universal descent.

Lemma 3.3.12. Let h* : € — R be t-geometric functor of universal descent. Then:
(1) An object x € C. is compact if and only if h*(x) € R, is compact.
(2) An object x € C~ is connective if and only if h*(x) € R~ is connective.

(3) Assume that both € and R are equipped with compact generators satisfying the assumption of Propo-
sition 1.5.7. Then an object x € PCoh(C) is pseudo-coherent if and only if h*(x) € PCoh(R) is pseudo-
coherent. Then the same is true for coherent objects.

Proof. First of all, since h* : € — R is of universal descent, we can find an exponent e > 0 such that the
identity on € is a retract of ¢ = @, : ¢ — € defined as above. With that being said, point (1) is exactly
Proposition 3.3.8 so let us prove (2). Since h* is left t-exact the implication (=) is always true, so let us
prove (&). Assume that x € € is such that h*(x) € R>n, for some integer n € Z. Since x is retract of @(x), it
suffices to prove that this object is connective. However, @(x) is obtained as a finite limit

¢(x) = lim(h.h"(x) = h.h"h. R (x) 3...)

so it suffices to show that each term is connective. This follows since h* is right t-exact and of finite coho-
mological dimension (hence h, is right t-exact up to a shift).
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For (3) note that our assumption guarantees that the pseudo-coherent objects of € and R coincide with
the pseudo-compact. In particular, the implication (=) is true by Remark 3.1.2. Let us show the converse
(&). Let x € € such that h*(x) € PCoh(R). Since PCoh(C) is stable under retracts, it suffices to show that
@(x) is pseudo-coherent. This is obvious, since ¢ (x) is a finite limit involving powers of h,.h* and both h,,
and h* preserves pseudo-coherent objects. Notice that in this last claim we are using Remark 3.3.10, since
we need h* to be quasi-proper.

Since h* is of finite tor-dimension by assumption, it clearly preserves coherent object. On the other side,
if x € Cis such that h*(x) € Coh(R) is coherent then the same argument above shows that x is a retract of
¢(x), which is a finite limit of coherent objects. O

3.4 Functors out of Coh(C)
We now prove our generalization of Neeman, Functors out of T2. First of all, let us introduce a class of
geometric (oo, 1)-categories for which Functors out of Coh(C) is automatically satisfied.

Definition 3.4.1. Let R be a t-geometric (oo, 1)-category. We will say that R is reqular if the compact objects
coincide with the coherent ones, that is R, = Coh(R).

Let R be a regular (oo, 1)-category and let R € R, be a compact generator. Then R must be bounded. In
general, this is a strong restriction on the class of regular (co, 1)-categories.

Example 3.4.2. Let A be a connective [E-ring and consider the (oo, 1)-category of modules Moda. In
general, every perfect objects of Mod 4, that is, every the compact object, is pseudo-coherent, thus providing
an inclusion Perf(A) C PCoh(A). If A is also coconnective, then every perfect object is coconnective, thus
proving refining the previous inclusion to Perf(A) C Coh(A). If Mod  is regular then the other inclusion
holds, and by [ , Lemma 11.3.3.3] it follows that A must be discrete.

For this reason, regular [E-rings are defined by just asking Coh(A) C Perf(A).

This implies that our definition of regular (oo, 1)-categories is not optimal, and therefore that all the
arguments which we now propose suffer of the same problem. Anyway, the our next goal is to show that
for regular (oo, 1)-categories the second abstract Neeman duality is a consequence of the first one.

Lemma 3.4.3. Let f* : B — R be a quasi-proper functor to a regular (oo, 1)-category, and assume that the
compact generator R of R is such that R(R, —) : R — B detects connective and coconnective objects and that
7o Homg (R, R>n) = 0 for some integer N > 0. Then there exist an equivalence of (oo, 1)-categories

RF — Funf_(Coh(R), Coh(B))
induced by the restricted dual Yoneda embedding.

Proof. Since R, = Coh(R), the duality Ax : RE — R provides a commutative square

RF —— Fun§_(Coh(R), Coh(B))

N [

Re — Fung, (R&F, Coh(B))

Since the horizontal bottom map is an equivalence by Functors out of €¢” and the vertical maps are equiv-
alence, the horizontal top map is an equivalence. O
In order to prove the main result of this section we need some technical results.

Lemma 3.4.4. Let f* : B — C be a quasi-proper functor. Then the dual Yoneda embedding on C restricts to
a functor _
% : €Y — Funf_(PCoh(C), PCoh(B)).

The same is true with Coh(—) in place of PCoh(—).
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Proof. Let x € C. be a compact object and let y € C be (pseudo-)coherent. We wish to show that ;:(x) (y) =
C(x,y) is (pseudo-)coherent. Since x is compact, this object can be identified with

G(X»y) - f*me(x)y) =~ f*(xv ®(‘3 y)

Since Lemma 1.3.8 implies that the tensor product x¥ ®¢ y is (pseudo-)coherent, the quasi-properness of f*
will conclude. O
Lemma 3.4.5. Let h* : € — R be a t-geometric functor of universal descent. Assume that:

(1) Both € and R come equipped with single compact generators and that the t-structure are in the pre-
ferred equivalence class.

(2) The (o0, 1)-category R is regular.
Then C. C Coh(C).

Proof. Let G € €. be a compact generator. Since the t-structure on C is in the preferred equivalence class, it
follows that G is connective. Thus €. C PCoh(@). If we show that G is also coconnective, then €. C Coh(C).
Since h* : € — R is of finite tor-amplitude, we can apply point (3) of Lemma 3.3.12 to G: since h*(G) €
R. = Coh(R) is coherent, it follows that G is coherent. O

Lemma 3.4.6. Let A be a small stable idempotent-complete (0o, 1)-category enriched over B. Let o« : AP —
B be an exact and B -enriched functor. If « is a retract of a representable, then it is representable.

Proof. Assume that we have a retract
o= A(—x) 5 o

for some x € A. We wish to show that « is representable. Now the compositionior: A(—,x) = A(—x)
is an idempotent and the enriched Yoneda lemma implies that it represented by a morphism f : x — x. By
Yoneda, f is an idempotent, and since A is idempotent-complete, it must split in A. Thus there exists two
morphisms

elbixLe

such that q oj ~id. and j o q ~ f. By Yoneda, the retract
Al=e) D5 A= %) 55 A e)

corresponds to the idempotent i o 1, thus showing & ~ A(—, e). O

We can now prove our generalization of Neeman, Functors out of T?, the second abstract Neeman duality.
Theorem 3.4.7 (Functors out of Coh(C)). Let f* : B — € be a functor satisfying the assumptions of the first
abstract Neeman duality. Assume that € admits a morphism of B-universal descent h* : € — R to a regular
(00, 1)-category. Then there exists an equivalence of (oo, 1)-categories

¥ : C® — Fun (Coh(€),Coh(B))

induced by the restricted dual Yoneda embedding.
Proof. Before doing the proof let us fix the notation. Since h* : € — R is of universal descent, we can find an

exponent e > 0 such that the identity on C is a retract of ¢ = @, : € — C, defined as in the previous section.
Consider now the enriched restricted Yoneda

% : €% — Funf (Coh(€), Coh(B)).

which is well defined thanks to that Lemma 3.4.4. We wish to show that X is fully-faithful and essentially
surjective.
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Let us start by showing its fully-faithfulness. By Lemma 3.4.5 we have that €. C Coh(C). Since the
enriched Yoneda embedding (applied to Coh(€)°P) is fully-faithful, we deduce that the composition'’

X : €% < Coh(€)P — Fun (Coh(€), B)
is fully-faithful. We now deduce the fully-faithfulness of

X : €% — Fung_ (Coh(€), Coh(B)).

This leaves us to show that X is essentially surjective. Since h* : ¢ — R is a morphism of B-universal
descent, we have that h* o f* satisfies the assumption of the first Neeman duality. In particular, the first
internal realization proved in Proposition 1.1.9 shows that the diagram

e —— Fun$_(Coh(€),Coh(B))

(h*)"Pi lfoh*

R& —=— Fun§_(Coh(R),Coh(B))
X

commutes. Let o : Coh(€C) — Coh(B) be an exact and B.-enriched functor. Since Remark 1.3.4 showed that
Coh(€) is idempotent-complete, we can apply the dual of Lemma 3.4.6. In particular, if we show that «co ¢
is representable, then the retract o« — oc o @ — oo will imply that o is represented by a coherent object of €.

Now the above diagram shows that the composition « o h. is represented by a compact object y € R".
Moreover, for every integer 1 < n < e, we have

oo (h,h*)" ~ xoh, oh*o (h, o h*)"!
~ ;:(y) oh* o (h, o h*)™!
~ f,h,Homg (y,h* o (h, o h*)" 1 (—)).

Since h* is quasi-perfect, the abstract Grothendieck-Neeman duality Theorem 1.1.11 implies that we have
adjunctions h¢yy 4 h* 4 h,. It follows that « o (h.h*)™ is represented by (h*h(;))™(y). Now the explicit
definition of @ = ¢. shows that « o ¢ is a finite limit of representable functors, and hence it must be
representable (since the enriched Yoneda is exact, being the domain and codomain stable). We conclude
that « ~ C(x,—) for some coherent object x € Coh(€). To show that x is actually compact, let us consider
the restriction «le, : €. — Coh(B). If we show that «|e, is represented by an object x’ € €., then we can
apply the (dual) enriched Yoneda lemma to

e, = Clx,—)le. =~ €C(x', e

c c

and deduce that x ~ x’ is actually compact. Now, to show that «|e, is represented by a compact object it
suffices to repeat the above argument and observe that &|e_ o ¢ is represented by a compact object since h*
preserves compact and since Lemma 1.1.8 implies that h(;) does that too. O

4 Examples

The goal of this chapter is to present some applications of the theory we have developed so far. We will
begin with Section 4.1 where we will apply the theory developed so far to module categories. The example to
have in mind are (oo, 1)-categories of module spectra. Anyway, the proof of Theorem 4.1.9 does not rely on
Functors out of C.”. The reason is simple: it is hard to give a characterization of quasi-proper morphisms
between module categories. Moreover, it is can be in general hard to find (if it exists!) a compact generator

19Notice that the dual Yoneda X does not restrict to a functor Coh(C)°P — Fun%c (Coh(€),Coh(B)). The obstruction lies in the fact
that we cannot identify it as the tensor product on C followed by the pushfoward!
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satisfying the assumption of the theorem. For this reason our proof relies on Theorem 3.2.2 and quasi-
perfect functors.

Finally, in Section 4.2 and Section 4.3 we will present more concrete examples by working in the realm
of algebraic geometry and and spectral algebraic geometry. In the case of schemes, the main results are
Corollary 4.2.6 and Corollary 4.2.7, for spectral algebraic spaces the result is Corollary 4.3.5.

4.1 Modules

We now discuss a broad class of examples, given by module categories. Let € be a symmetric monoidal
(0o, 1)-category and let x € CAlg(C) be a commutative algebra object. Thanks to [ , Section 4.3], there
exists a sensible theory of x-module objects in C. An x-module object in € is just an object ¢ € € equipped
with an action a : x ® ¢ — c in C that satisfies the usual conditions. Thatis,if m: x®x —w xandu:1 — x
denote the multiplication and unit map on x, then the diagrams

meid u®id
XR®XP®C — X®C 1®c —————— x®¢c¢

1d® Cll lm \ /

m
X®C ——r— C c

are commutative up to higher coherence conditions. The collection of such objects organize into an (oo, 1)-

category Mod, (C). Moreover, tensoring with x determines a functor x ® — : € — Mod(€). This functor is

left adjoint to the forgetful functor res : Mod(€) — €, which is conservative.

We now show that module objects are stable under many construction introduced so far. Let us first
discuss the geometric properties.

Lemma 4.1.1. Let C be a geometric (oo, 1)-category and let x € € be a commutative algebra object. Then
the (o0, 1)-category Mod, (C) of x-module objects in € is geometric. Moreover, x ® — : € — Mod,(C) is a
geometric functor.

Proof. First of all, [ , Proposition 7.1.1.4 and Section 4.4] show that Mod, (€) is stable by and endowed
with a symmetric monoidal structure given by the relative tensor product. Moreover, by [ , Section
4.3.3], Mody (€) admits both colimits and small limits, which are preserved and detected by the forgetful
functor res : Mod«(€) — C. Consider the left adjoint x ® — : € — Mody(C). The essential image of
the compact generators of € compactly generates Mod,(€) — €. Since tensoring with x is a symmetric
monoidal functor, we deduce that dualizable and compact objects in Mod, (€) coincide. To conclude, let us
also note that x ® — : € — Mody(C) is geometric by definition. O

If € comes equipped with a well generated geometric tensor t-structure, then the same happens for
module objects:

Lemma 4.1.2. Let C be a geometric (oo, 1)-category. Assume that the monoidal unit of € is a compact
generator, and equip € with the geometric tensor t-structure of Lemma 1.2.12. Let x € € be a commutative
algebra object. Then the (oo, 1)-category Mod, (€) can be equipped with a geometric tensor t-structure such
that x ® —: € — Mody(C) is a t-geometric functor.

Moreover, if x is connective in €, then res : Mod (€) — € is t-exact.

Proof. Before doing the actual proof, let us note that the t-structure of Lemma 1.2.12 is indeed tensor since
the explicit description of the connective aisle C>¢ shows that it contains the monoidal unit and it is closed
under tensor products. Let us denote by 1e the monoidal unit of C. We first observe that, since 1¢ is a
generator, the adjunction x ® — - res, coupled with fact that res is conservative, implies that x is a compact
generator of Mod, (C). We can then apply Lemma 1.2.12 to deduce the existence of a geometric tensor
t-structure (Mody (€)<o,Modx(€)>o). The “tensor” part follows since x is the monoidal unit. From the
construction we also see that the left adjoint x ® — is clearly right t-exact. The “moreover” part is obvious.

O
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On the other side, cohereness is not preserved by taking module objects.

Remark 4.1.3. Assume that C is coherent and let x € C be a commutative algebra object. Then it is not
always true that Mod, (C) is coherent. Indeed, if R is a connective commutative ring spectrum, then Modgr =
Modg (Sp) is coherent if and only if R is a coherent ring in the sense of [ , Definition 7.2.4.16], whereas
Sp ~ Modg(Sp) is coherent.

To avoid awkward terminology, we will say that a commutative algebra object x € CAlg(€) in a geo-
metric (oo, 1)-category C is coherent if the module category Mody (€) is coherent when equipped with the
geometric tensor t-structure of Lemma 4.1.2.

Remark 4.1.4. We can also adopt a relative point of view. Let C be a t-geometric (oo, 1)-category whose
monoidal unit is a compact generator. Assume that the t-structure is induced by Lemma 1.2.12. Letf: x — y
be a map of commutative algebra objects in C. Regard y as an x-module. Then [ , Theorem 4.5.3.1]
implies the existence of the following commutative diagram

Mod, (€) — Y=, Mod, (€)

\/

where the functor f* ~ y ®, — is called the extension of scalars. By the general theory, f* is symmetric
monoidal and colimit preserving, hence geometric. Furthermore, if we equip Mod,(€) and Mod,, (€) with
the geometric tensor t-structure of Lemma 4.1.2, then f* is also t-geometric. The right adjoint f. = res¢ of
f* is given by the forgetful functor, and is called the restriction along f. Moreover, if y € (Mody(C))>o is
connective, then resy is also t-exact.

Remark 4.1.5 (The Coextension). Let C be a t-geometric (oo, 1)-category whose monoidal unit is a compact
generator. Assume that the t-structure is induced by Lemma 1.2.12. Let f : x — y be a map of commutative
algebra objects in €. In Section 1.1 we have discovered that the restriction along f admits a right adjoint f(!)
called the coextension of scalars. It is given by ) (=) ~ Homy (y, —) : Mod(C) — Mod, (€).

Remark 4.1.6. Let € and f : x — y be as in the previous remarks. If y € (Modx(C))>o is connective as an x-
module, then the restriction along f is t-exact. In particular, we can apply Remark 1.2.17 and Lemma 1.2.18
to the adjunctions y ®yx — 4 res¢ 4+ Homy (y, —) to deduce the existence of adjunctions

Ply®x—) Press

™~ T
Mod, (€)Y 1 Mody(e)v L Mod, (€)%
~_ ~_

Press PHom, (y,—)
between the hearts.

In order to prove our result on module categories, we need one more technical result.
Lemma 4.1.7. Let Pf* 4 Pf, 4 Pf(1) : BY — €Y be a double adjunction between Grothendieck abelian
1-categories. Assume that:
(1) The middle adjoint Pf, is conservative.

(2) The outermost right adjoint Pf!!) preserves filtered colimits (if ¥ is compactly generated this as-
sumption is equivalent to P f, preserving compact objects).

Then Pf, : €YV — BY detects compact objects.

Proof. Let x € C¥ be such that Pf.(x) is compact in BY. We wish to show that x is compact. First of all, it
is finitely generated. Since the right adjoint Pf, is conservative, the counit P f* Pf,(x) — x is a (strong) epi-
morphism. In particular, since the epimorphic image of finitely generated object is again finitely generated,
it suffices to show that Pf* Pf,(x) is finitely generated. But Pf,(x) is finitely generated, and P f* preserves
finitely generated objects (since P f, preserves filtered colimits and monomorphism).
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Consider now a short exact sequence in €

0 — ker(h) -y My 50

in C¥ and assume that y is finitely generated. We wish to show that ker(h) is finitely generated. Apply Pf.
and use its exactness to deduce the short exact sequence

0 — ker(Pf.(h) — Pf.(y) —"L Pe,(x) — 0

in BY. Notice that Pf,(y) is again finitely generated. This follows by adjunction Pf, - Pf(!), by point
(2) and by right exactness of Pf(1). Now, since Pf.(x) is compact, hence finitely presented, it follows that
Pf.(ker(h)) = ker(Pf,(h)) is finitely generated. By the same argument above, the counit P * Pf, (ker(h)) —
ker(h) exhibits ker(h) as finitely generated. O

Remark 4.1.8. Let f* : B — C be a t-geometric functor between coherent (oo, 1)-categories. Assume also
that the right adjoint f, is t-exact preserves compact objects. Then the induced functor Pf, : ¥ — BY
preserves compact objects. Indeed, since the heart C¥ is compactly generated by the 715(G) of the compact
generator G of C, it suffices to show that Pf, sends 7 (G) to a compact object. This follows since f, preserves
compact objects and is t-exact: the isomorphism Pf, (7 (G)) ~ 7o (f.(G)) show that Pf,(7(G)) is compact.

Let f : x — y be a map of commutative algebra objects. We will say that f is finitely presented if res¢(y) is
a compact object of Mody (€). In this case, the coextension Hom, (y, —) preserves filtered colimits. To state
the result, let us abbreviate PCoh(Mod,, (€)) and Coh(Mod,,(€)) with PCoh(y) and Coh(y). We will also
denote by Perf(y) the subcategory of compact objects Mod,, (€).. We do the smae for x.

Theorem 4.1.9 (Functors out of CF for module categories). Let C be a t-geometric (0o, 1)-category whose
monoidal unit is a compact generator. Assume that the t-structure is induced by Lemma 1.2.12. Letf : x — y
be a finitely presented map in CAlg(C) between coherent objects. Assume that y connective in Mod, (C).
Then the restricted Yoneda embedding induces equivalences

PCoh(y) — Fungpg(,)(Perf(y)°, PCoh(x)), Coh(y) — Funpg ) (Perf(y)°P, Coh(x))
of (oo, 1)-categories.

Proof. Apply Theorem 3.2.2 to the geometric functor y ®, — : Mod(€) — Mod, (C) to get equivalences of
(00, 1)-categories
f*(PCoh(y)) — Funpg ¢, (Perf(y)°P, PCoh(x))

and
#(Coh(y)) — Funfg(,, (Perf(y)°?, Coh(x)).

To prove the theorem we need to identify the two kernels with PCoh(y) and Coh(y). We treat the case of
pseudo-coherent objects; the case of coherent objects is exactly the same. The proof relies on Theorem 1.4.12.
It shows that ¢ € Mod, (€) is pseudo-coherent if and only if 7, (c) is compact in Mod, (€)" and vanishes
for n << 0. A similar description exists for Mod,, (C).

We claim that y ®y — is quasi-proper, that is, res¢ preserves pseudo-coherent objects. Take ¢ € PCoh(x).
Since y is connective in Mod (€), Remark 4.1.6 implies that res¢ is t-exact, so that we have isomorphisms

o (rese(c)) = Prese(mn(c)))

in Mody(e)v for every n € Z. In particular, 7, (c) = 0 for n << 0 implies 7, (res¢(c)) = 0 for n << 0.
Now f finitely presented implies that the coextension preserves filtered colimits, and Lemma 1.1.8 implies
that res¢ preserves compact objects. Remark 4.1.8 implies then that Pres¢ preserves compact objects. In
particular, 7, (c) compact in Mod, (€)% for every n € Z implies that 7, (res¢(c)) is compact in Mod,, (e)°
for every n € Z thanks to the above isomorphism. Hence res¢(c) € PCoh(x), thus showing that y ®, — is
quasi-proper. Hence the inclusion PCoh(y) C f#(PCoh(x)).
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We now need the converse, so assume that res¢(c) is pseudo-coherent in Mod, (€) and let us show that
c is pseudo-coherent in Mod, (€), or, equivalently, that 7, (c) is compact in Mod,,(€)® and vanishes for
n << 0. To show that, we use again the above isomorphism. Indeed, being res¢ conservative and t-exact, it
follows that Pres¢ is conservative. In particular, 7, (res¢(c)) = 0 for n << 0 implies 7, (c) = 0 for n << 0.
So we are left to show that Pres; detects compact objects between locally coherent abelian 1-categories.
Since the restriction Pres; is conservative, Lemma 4.1.7 will conclude. O

Warning 4.1.10. Note that the above theorem does not require any noetherianess assumption, contrary to
what we can expect from some enhancement of Neeman'’s corollary [ , Corollary 0.5]. The reason is
that we traded noetherianess and finite maps with coherence and finitely presented maps.

Example 4.1.11. The above theorem is particularly useful when applied to the (oo, 1)-category of spectra
Sp. If f : A — B is a map between coherent E,-rings and B is compact as A-module, then it provides
equivalences

PCoh(B) — Funpg 4, (Perf(B)°F,PCoh(A)), Coh(B) — Funpg(Perf(B)°P, Coh(A)).

Here Perf stands for compact objects, see [ , Proposition 7.2.4.2].

4.2 Schemes

We begin by considering the case of schemes. Let X be a quasi-compact quasi-separated scheme and
let us denote by QCoh(X) the derived (oo, 1)-category of quasi-coherent sheaves on X. The language of
(00, 1)-categories allows us to write QCoh(X) as

QCOh(X) = lim MOdHR
Spec(R)CX

where the limit is taken over the poset of open affine subsets of X. Here Modnr is the (oo, 1)-category
of modules over the Eilenberg-MacLane spectrum HR, or equivalently the (unbounded) derived (oo, 1)-
category of R-modules. This limit allows us to show that QCoh(X) is a stable homotopy theory. Indeed, it
does not matter if the limit takes place in CAlg(Pr5®) or in Pry®, since it will always follow formally that
QCoh(X) is a stable compactly generated (oo, T)-category equipped with a symmetric monoidal structure,
compatible with colimits.

We can also show that QCoh(X) is geometric. Indeed, since X is quasi-compact and quasi-separated,
the monoidal unit O, of QCoh(X) is compact. In particular, any dualizable object is compact. Moreover,
dualizable objects coincide with the perfect objects Perf(X), that is with those objects complexes which,
locally, are quasi-isomorphic to bounded chain complexes of finitely generated projective modules. See
[ , Lemma 08]]] and [ , Lemma OFPV] for a proof. Thanks to [ , Proposition 09M1] we get
that any perfect object is compact, so that dualizable and compact objects coincide.

Consider now the standard t-structure on QCoh(X). This t-structure is accessible, compatible with
filtered colimits and right (and left) complete, so that it is t-geometric in the sense of Definition 1.2.3. Being
generated by the monoidal unit Ox, every t-structure with cocomplete aisle will define a tensor t-structure.

We can now study the compact generation of QCoh(X). A beautiful result of Bondal and van den Bergh
[ , Theorem 3.1.1] shows that QCoh(X) is generated by a single compact object G. We can therefore
consider the preferred equivalence class. The following result shows that being connective can be detected
by pulling back along an open affine cover, so that the standard t-structure on QCoh(X) is equivalent to the
one determined by G.

Lemma 4.2.1. Let X be a quasi-compact quasi-separated scheme. Suppose (C>o,C<o) is a t-structure on
QCoh(X) such that for all open immersions i : U — X where U is affine, the pair (i*C>0,1*C<o) is t-
structure on QCoh(U). An object x in QCoh(X) belongs to € if and only if i* is in i*C>( for all open
immersions i: U — X where U is affine.

Proof. First of all, notice that we are assuming that the essential image along i* of a t-structure is still a
t-structure. This trivial (but tedious) fact follows since i* is an essentially surjective functor. For the actual
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proof of the claim, let us first note that the “only if” direction is automatic. For the “if” direction, let us
assume that x € QCoh(X) is such that i*(x) is in i*C>¢ for all open immersions i : U — X with U is affine.
Thanks to our assumption, by applying i* to the cofibre sequence T>0x — x = T<_1x in QCoh(X) we learn
that i*(t<_1x) ~ 0 in QCoh(U) for every open immersions i : U — X with U affine. Here the truncation
functors are the one of (C>o,C<o). We now conclude by that T<_1x ~ 0 in QCoh(X), so that x € C>, by
noting that the functor (i*)y : QCoh(X) — ], QCoh(U) is conservative when the index U of the product
ranges in an open affine cover of X. O

Moreover, since compact objects coincide with perfect ones and X is quasi-compact, it follows that G is
a bounded object and hence that o Homgcon(x) (G, €>n) = 0 for some integer N > 0. Let us summarize
everything.

Corollary 4.2.2. Let X be a quasi-compact quasi-separated scheme and let G be a compact generator for
QCoh(X). Then the standard t-structures equips QCoh(X) with the structure of a t-geometric (oo, 1)-
category. Moreover, there exists an integer N > 0 such that G € QCoh(X)>_n is (—N)-connected and
1o Homgcon(x) (G, €>n) = 0.

We wish now to compute our (pseudo)-coherent objects (which we will denote by Coh(X) C PCoh(X))
for the standard t-structure on QCoh(X). First of all, the boundedness of the compact generator G ensures
that Perf(X) C Coh(X), and hence Lemma 1.3.8 shows that Coh(X) € PCoh(X) are Perf(X)-submodules.
The assumptions on G allow us to also apply Proposition 1.5.7. It follows that the (pseudo)-coherent objects
coincide with the bounded pseudo-compact objects. Lipman and Neeman showed that these objects coin-
cide with the bounded pseudo-coherent objects first studied in Illusie’s exposés [ ] in SGAG6. These
are the complexes of Ox-modules that are locally pseudo-coherent in the sense of | , Definition 064Q)].
Under some finiteness assumption we can further identify these objects.

Lemma 4.2.3. Let X be quasi-separated noetherian (or even coherent) scheme. Then the standard t-structure
on QCoh(X) is coherent in the sense of Definition 1.4.2.

Proof. We have already observed that the standard t-structure on QCoh(X) is in the preferred equivalence
class and that there exists an integer N > 0 such that o Homgcon(x) (G, QCoh(X)>n) = 0. To check the
second condition, let us first note that Bondal -van den Bergh proof on the existence of G may be modified to
show that the homotopy groups 7t; (G) = H™}(X, G) are compact in the heart QCoh(X)“. This follows since
the construction is done via the induction principle on schemes, and since the claim is true for affine and
for Koszul complexes, it glues to a global statement. By thickness, it also follows that any compact object
has this property. The claim then follows by using that the t-structure is in the preferred equivalence class.
We are left to prove that the heart QCoh(X)" is a locally coherent abelian 1-category. This follows since the
compact objects in QCoh(X)? are exactly the coherent objects Coh(X)Y (see for example the MathOverflows
question Compact quasi-coherent sheaves). When X is coherent, the heart Coh(X)® is locally coherent
abelian, and locally noetherian abelian when X is noetherian. O

Hence Theorem 1.4.12 allows us to compute explicitly Coh(X) C PCoh(X): they turn out to be the
classical Dg’oh(X) C D_,,(X). This gives a different proof of [ , Lemma 08E8], and concludes what we
have to say about QCoh(X).

Let us now consider a map f : X — Y between quasi-compact separated schemes. Consider the pullback
functor f* : QCoh(Y) — QCoh(X). This functor is t-geometric, since it is colimit preserving, symmetric
monoidal and right t-exact with respect to the standard t-structure. It is moreover of finite cohomologi-
cal dimension. In general the pushfoward f.. does not preserve compact objects, neither it sends pseudo-
coherent objects to pseudo-coherent objects. It does when it is quasi-perfect or quasi-proper, respectively.

Lemma 4.2.4. Let f : X — Y be a morphism of quasi-compact quasi-separated schemes, and let G be a com-
pact generator for QCoh(X). Then f.Homgeon x) (G,—) : QCoh(X) — QCoh(Y) detects being connective
and coconnective.

Proof. We may assume that Y = Spec(R) is affine. The proof follows from [ , Theorem 1.10]
by noting that we can modify their argument (which deals with the case X — Spec(Z)) to fit our case
X — Spec(R). O
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We can now apply the first abstract Neeman duality, that is Theorem 3.2.4, to deduce the following
result.

Corollary 4.2.5. Let f : X — Y be a quasi-proper map of quasi-compact quasi-separated schemes. Assume
that Y is coherent. Then we have equivalences of (oo, 1)-categories

PCoh(X) — Funpy(y, (Perf(X)°?, PCoh(Y)), Coh(X) — Funpg¢(y) (Perf(X)°P, Coh(Y)).
induced by the the restricted Yoneda embedding.

We can obtain a more classical result by means of Kiehl’s Finiteness Theorem [ , Theorem 2.9'].
It shows that every proper pseudo-coherent map is quasi-proper, and, in particular, it implies that every
finite-type separated map f : X — Y over a noetherian base is quasi-proper if and only if it is proper. This
observation, coupled with the previous result, proves the following generalization of [ , Corollary
0.5].

Corollary 4.2.6. Let f : X — Y be a proper map and assume that Y is noetherian. Then we have equivalences
of (oo, 1)-categories

Dcoh

(X) — Funpy) (Perf(X)°P, D, (Y)), D2 (X) = Funpy gy, (Perf(X)°P, D (V).

» ~coh coh coh

induced by the the restricted Yoneda embedding.

We now turn our attention to the second duality result. Let X be a noetherian scheme. Recall that a
reqular alteration of X is a proper surjective morphism h : R — X such that:

(1) Risregular and finite dimensional.
(2) There is a dense open set U C X over which h is finite.
Since X is noetherian and every morphism of finite type over a locally noetherian base is of finite presen-

tation, [ , Lemma OETW] implies that every regular alteration h : R — X is an h-cover in the sense of
Voedvosky [ , Definition OETS]. Now by [ , Proposition 11.25] every h-cover h : R — X of noethe-
rian schemes is descendable in the sense of [ , Definition 3.18]. If now h is also of finite tor-amplitude

(that is, is quasi-perfect), then the derived pullback h* : QCoh(X) — QCoh(R) is of universal descent in the
sense of Definition 3.3.5. Indeed, point (1) follows by the quasi-perfection of h, whereas point (2) follows
from Bhatt and Scholze result. Finally, by regarding h* as a t-geometric functor, it immediately follows that
it is also a t-geometric functor of universal descent in the sense of Definition 3.3.9. With these observations
in our hands, we can prove our application of the second abstract Neeman duality, Theorem 3.4.7.

Corollary 4.2.7. Let f : X — Y be a proper map and assume that Y is noetherian. Assume that X is separated
and of finite type scheme over an excellent scheme of dimension < 2. Then we have an equivalence of
(00, 1)-categories

Perf(X)% — Funpeg(y) (Do (X), Do (Y))

induced by the the restricted dual Yoneda embedding.

Proof. We wish to apply Theorem 3.4.7, so let us check the assumptions. In [ ] and [ ] de Yong
proved that every separated and of finite type scheme over an excellent scheme of dimension < 2 admits a
regular alteration. In particular, we find a regular alteration h : R — X. Consider now the derived pullback
h* : QCoh(X) — QCoh(R). It follows that:

(1) Since R is a regular scheme, QCoh(R) is a regular (oo, 1)-category in the sense of Definition 3.4.1.

2) Since h is a proper and surjective morphism from a finite dimensional scheme, it follows that X is
prop 1] P
finite dimensional. Since any proper morphism between finite dimensional noetherian schemes is
quasi-perfect, it follows that h* is of universal descent in the sense of Definition 3.3.9.

In particular, we will be done if h* is of QCoh(Y)-universal descent. This is obvious: apply Lemma 4.2.4. [
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4.3 Spectral Deligne-Mumford Stacks

We can generalize the previous example by considering spectral Deligne-Mumford stacks. Let us denote
by Spc the very large (0o, 1)-category of large spaces. Denote also by CAlg™(Sp) the (oo, 1)-category of
connective [E,-rings.

Definition 4.3.1 ([ , Definition 9.1.0.1]). Let X : CAlg™(Sp) — Spc be a functor. We will say that X is
quasi-geometric stack if it satisfies the following conditions:

(1) The functor X satisfies descent with respect to the fpqc topology.
(2) The diagonal map & : X x X — X is quasi-affine
(3) There exists a connective E,-ring A and a faithfully flat morphism Spec(A) — X.

The class of quasi-geometric stacks contains many algebro-geometric objects that arise in practice. In
[ , Section 6.2], Lurie assigns to every quasi-geometric stack X (and actually to every functor X :

CAlg™(Sp) — S/p\c an (oo, 1)-category of quasi-coherent sheaves QCoh(X). If X is actually represented by a
spectral Deligne-Mumford stack, then [ , Proposition 2.2.4.1, Proposition 2.2.4.2] show that QCoh(X)
is presentable, stable and equipped with a symmetric monoidal such that the tensor product ® preserves
small colimits separately in each variable. By [ , Proposition 2.2.5.2, Proposition 2.2.5.4 and Proposi-
tion 2.1.1.1], QCoh(X) comes equipped with a geometric tensor t-structure.

Anyway, we still have to determine when QCoh(X) is geometric. The first obstruction happens since,
in general, the monoidal unit Ox is not a compact object of QCoh(X). The second obstruction is in the
compact generation, since QCoh(X) does not have enough perfect complexes in general. For this reason, it
is better to restrict to perfect stacks. Roughly speaking, a quasi-geometric stack X is perfect if the canonical
map Ind(Perf(X)) — QCoh(X) is an equivalence of (oo, 1)-categories (see [ , Proposition 9.4.4.5]). Here
it is the precise definition.

Definition 4.3.2 ([ , Definition 9.4.4.1]). Let X : CAlg™(Sp) — §}§: be a functor. We will say that X is a
perfect stack if it satisfies the following conditions:

(1) The functor X is a quasi-geometric stack.
(2) The structure sheaf Ox is a compact object of QCoh(X).

(3) Every quasi-coherent sheaf ¥ € QCoh(X) can be obtained as the colimit of a filtered diagram {F; }ic1,
where each J; is a perfect object of QCoh(X).

Now, as always, perfect and dualizable objects coincide. Since for a perfect stack X the compact objects
coincide with the perfect ones, it follows that QCoh(X) is a geometric (oo, 1)-category.

Compact generations by a single object is more subtle and need some restriction. First of all, let us
recall that a spectral algebraic space is a spectral Deligne-Mumford stack X such that the mapping space
Hom(Spét(R), X) is discrete for every commutative ring R. See [ , Definition 1.6.8.1]. Now [ ,
Proposition 9.6.1.1] shows that if X is a quasi-compact, quasi-separated spectral algebraic space then its
functor of points defines a perfect stack, allowing us to deduce that QCoh(X) is geometric. Its compact
generation by a single object follows then by [ , Corollary 9.6.3.2]. To sum up, we have the following.

Corollary 4.3.3. Let X be a quasi-compact and quasi-separated spectral algebraic space. Then the (oo, 1)-
category of quasi-coherent sheaves QCoh(X) on X, equipped with the standard t-structure, is t-geometric.
Moreover, X comes equipped with a compact generator G such that the standard t-structure is in the pre-
ferred equivalence class. Finally, if X is noetherian, then QCoh(X) is coherent.

In light of this result, we will study morphisms of quasi-compact, quasi-separated spectral algebraic
spaces. Let f : X — Y be such morphism. In this case f determines a symmetric monoidal and colimit pre-
serving functor f* : QCoh(Y) — QCoh(X). In particular, f* is geometric. If we equip QCoh(X) and QCoh(Y)
with the standard t-structure, then f* is also right t-exact. We are left to determine under what assumptions
f* is quasi-perfect. Since it is clear that the standard t-structures are in the preferred equivalence classes and
that being of cohomological dimension is a property directly reflected from f, we are left to determine when
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f, preserves pseudo-coherence. Thanks to the direct image theorem, [ , Theorem 5.6.02], we learn that,
for any proper and locally almost of finite presentation of spectral Deligne-Mumford stacks f : X — Y the
direct image functor f, : QCoh(X) — QCoh(Y) carries almost perfect objects to almost perfect objects”’. The
definitions of proper and locally almost of finite presentation morphisms are in [ , Definition 5.1.2.1
and Definition 4.2.0.1]. To sum up, we have the following.

Corollary 4.3.4. Let f : X — Y be a morphism of finite cohomological dimension of quasi-compact quasi-
separated spectral algebraic spaces which is proper and locally almost of finite presentation. Then f* :
QCoh(Y) — QCoh(X) is quasi-proper.

We now deduce the following consequence of Theorem 3.2.4.

Corollary 4.3.5. Let f : X — Y be a morphism of finite cohomological dimension of quasi-compact quasi-
separated spectral algebraic spaces which is proper and locally almost of finite presentation. Assume that
QCoh(X) comes equipped with a compact generator G such that mo Homgcon(x) (G, QCoh(X)>n) = 0 for
some integer N > 0. Assume also that Y is noetherian. Then we have equivalences of (oo, 1)-categories

PCoh(X) — Funpyy(y, (Perf(X)°, PCoh(Y)), Coh(X) — Funpg(y) (Perf(X)°P, Coh(Y)).
induced by the restricted Yoneda embedding.

Proof. We are left to show that, for a perfect complex G, generating QCoh(X) then the enriched Yoneda
embedding QCoh(X)(G,—) : QCoh(X) — QCoh(Y) detects the properties of being bounded above and
being bounded below. Since we may reduce to Y affine, the proof follows by [ , Proposition 7.0.2 and
Remark 7.0.3]. Their argument, which is for algebraic spaces, can be carried without any modification also
for spectral algebraic spaces and works for morphisms of quasi-compact quasi-separated spectral algebraic
spaces. O

Unfortunately, we do not know any application of Theorem 3.4.7 in the realm of spectral algebraic ge-
ometry. Actually, Example 3.4.2 shows that the we are far from proving an honest second abstract Neeman
duality...

20Recall that our pseudo-coherent objects where defined to coincide with Lurie’s almost perfect objects on a quasi-compact spectral
Deligne-Mumford stack.
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certain full subcategory of the co-category of “many-object associative algebras” in V. The latter are defined using a
non-symmetric version of Lurie’s co-operads, and we develop the basics of this theory, closely following Lurie’s treat-
ment of symmetric co-operads. While we may regard these “many-object” algebras as enriched co-categories, we show
that it is precisely the full subcategory of “complete” objects (in the sense of Rezk, i.e. those whose space of objects is
equivalent to its space of equivalences) which are local with respect to the class of fully faithful and essentially surjec-
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We show that an co-category M with a closed left action of a monoidal co-category V is completely determined by
the V-valued graph of morphism objects resulting from closedness of the action equipped with the structure of a V-
enrichment in the sense of Gepner-Haugseng. We prove a similar result when M is a V-enriched co-category in the
sense of Lurie, an operadic generalization of the notion of co-category with closed action. Precisely, we prove that send-
ing a V-enriched co-category in the sense of Lurie to the V-valued graph of morphism objects refines to an equivalence
X between the co-category of V-enriched co-categories in the sense of Lurie and of Gepner-Haugseng. Moreover if V
is a presentably k + 1-monoidal co-category for T < k < oo, we prove that x restricts to a lax k-monoidal functor
between the co-category of left V-modules in Pr", the symmetric monoidal co-category of presentable co-categories,
endowed with the relative tensor product, and the tensor product of V-enriched co-categories of Gepner-Haugseng.
As an application of our theory we construct a lax symmetric monoidal embedding of the co-category of small stable
oo-categories into the co-category of small spectral co-categories. As a second application we produce an enriched
Yoneda-embedding in the framework of Lurie’s notion of enriched co-categories.
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ogous to those of Hopkins and Smith about detection of nilpotence and classification of thick subcategories. We define
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homotopy category hoX. We show that X is a Kan complex if and only if hoX is a groupoid. The result plays an

important role in the theory of quasi-categories (in preparation). Here we make an application to the theory of initial
objects in quasi-categories. We briefly discuss the notions of limits and colimits in quasi-categories.
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The aim of the present paper is to demonstrate the usefulness of aisles for studying the tilting theory of D® (mod A ),
where A is a finitedimensional algebra. In section 1, we establish the equivalence of “aisles” with “t-structures” in
the sense of [3] and give a characterization of aisles in molecular categories. Section 2 contains an application to the
generalized tilting theory of hereditary algebras. Using aisles, we then give a geometrical proof of the theorem of Hap-
pel [7] which states that a finitedimensional algebra which shares its derived category with a Dynkinalgebra A can be
transformed into A by a finite number of reflections. The techniques developed so far naturally lead to the classification
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of the tilting sets in D® (mody A, ) presented in section 5. Finally, we consider the classification problem for aisles in

DY (mod a ), where A is a Dynkin-algebra. We reduce it to the classification of the silting sets in DY (mod A ), which
we carry out for A = An.
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For amap f : X — Y of quasi-compact quasi-separated schemes, we discuss quasi-perfection, that is, the right
adjoint f* of the derived functor Rf, respects small direct sums. This is equivalent to the existence of a functorial
isomorphism f X0y @ Lf* (=) = fX(—); to quasi-properness (preservation by Rf, of pseudo-coherence, or just
properness in the noetherian case) plus boundedness of Lf* (finite tor-dimensionality), or of the functor f*; and to
some other conditions. We use a globalization, previously known only for divisorial schemes, of the local definition of
pseudo-coherence of complexes, as well as a refinement of the known fact that the derived category of complexes with
quasi-coherent homology is generated by a single perfect complex.
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Higher category theory is generally regarded as technical and forbidding, but part of it is considerably more tractable:
the theory of infinity-categories, higher categories in which all higher morphisms are assumed to be invertible. In
Higher Topos Theory, Jacob Lurie presents the foundations of this theory, using the language of weak Kan complexes
introduced by Boardman and Vogt, and shows how existing theorems in algebraic topology can be reformulated and
generalized in the theory’s new language. The result is a powerful theory with applications in many areas of mathe-
matics. The book'’s first five chapters give an exposition of the theory of infinity-categories that emphasizes their role as
a generalization of ordinary categories. Many of the fundamental ideas from classical category theory are generalized
to the infinity-categorical setting, such as limits and colimits, adjoint functors, ind-objects and pro-objects, locally acces-
sible and presentable categories, Grothendieck fibrations, presheaves, and Yoneda’s lemma. A sixth chapter presents
an infinity-categorical version of the theory of Grothendieck topoi, introducing the notion of an infinity-topos, an
infinity-category that resembles the infinity-category of topological spaces in the sense that it satisfies certain axioms
that codify some of the basic principles of algebraic topology. A seventh and final chapter presents applications that
illustrate connections between the theory of higher topoi and ideas from classical topology.
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I show that the theories of enrichment in a monoidal co-category defined by Hinich and by Gepner-Haugseng agree,
and that the identification is unique. Among other things, this makes the Yoneda lemma available in the former model.
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To a “stable homotopy theory”(a presentable, symmetric monoidal stable co-category), we naturally associate a cat-
egory of finite étale algebra objects and, using Grothendieck’s categorical machine, a profinite group that we call the
Galois group. We then calculate the Galois groups in several examples. For instance, we show that the Galois group
of the periodic E-algebra of topological modular forms is trivial and that the Galois group of K(n)-local stable ho-
motopy theory is an extended version of the Morava stabilizer group. We also describe the Galois group of the stable
module category of a finite group. A fundamental idea throughout is the purely categorical notion of a “descendable”
algebra object and an associated analog of faithfully flat descent in this context.
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We revisit an old assertion due to Rouquier, characterizing the perfect complexes as bounded homological functors on
the bounded complexes of coherent sheaves. The new results vastly generalize the old statement-first of all the ground
ring is not restricted to be a field, any commutative, noetherian ring will do. But the generalization goes further, to the
abstract world of approximable triangulated categories.
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We generalize a theorem of Bondal and Van den Bergh. A corollary of our main results says the following: Let X

be a scheme proper over a noetherian ring R. Then the Yoneda map, taking an object D in the category DY, (X) to
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a finite R-module for every C € DP*f(X). Bondal and Van den Bergh proved the special case where R is a field and X
is projective over R. But our theorems are more general. They work in the abstract generality of triangulated categories
with coproducts and a single compact generator, satisfying a certain approximability property. At the moment I only
know how to prove this approximability for the categories Dy (X) with X a quasicompact, separated scheme, for the
homotopy category of spectra, for the category D (R) where R is a (possibly noncommutative) negatively graded dg
algebra, and for certain recollements of the above. The work was inspired by Jack Hall’s elegant new proof of a vast
generalization of GAGA, a proof based on representability theorems of the type above. The generality of Hall’s result
made me wonder how far the known representability theorems could be improved.
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In this paper we will prove that the A -nerve of two quasi-equivalent A.-categories are weak-equivalent in the Joyal
model structure, a consequence of this fact is that the A.,-nerve of a pretriangulated A-category is co-stable. More-
over we give a comparison between the notions of pretriangulated A -categories, pretriangulated dg-categories and
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We use the terms “oo-categories” and “oco-functors” to mean the objects and morphisms in an “oo-cosmos”. Quasi-
categories, Segal categories, complete Segal spaces, naturally marked simplicial sets, iterated complete Segal spaces,
0 .-spaces, and fibered versions of each of these are all co-categories in this sense. We show that the basic category
theory of co-categories and oco-functors can be developed from the axioms of an co-cosmos; indeed, most of the work
is internal to a strict 2-category of oco-categories, co-functors, and natural transformations. In the -cosmos of quasi-
categories, we recapture precisely the same theory developed by Joyal and Lurie, although in most cases our definitions,
which are 2-categorical rather than combinatorial in nature, present a new incarnation of the standard concepts. In
the first lecture, we define an co-cosmos and introduce its “homotopy 2-category”, using formal category theory to
define and study equivalences and adjunctions between co-categories. In the second lecture, we study (co)limits of
diagrams taking values in an co-category and the relationship between (co)limits and adjunctions. In the third lecture,
we introduce comma co-categories, which are used to encode the universal properties of (co)limits and adjointness and
prove “model independence” results. In the fourth lecture, we introduce (co)cartesian fibrations, describe the calculus
of “modules” between oco-categories, and use this framework to prove the Yoneda lemma and develop the theory of
pointwise Kan extensions of co-functors.
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